(*) = co-first author, (†) = corresponding author
2025
[arXiv] [journal] J. Kim, S. Park, and K-Y. Bak. (2025). Analysis of US airport network and KOSPI volatility based on covariance regression modeling method. Commun. Stat. Appl. Methods. 32, 655-672.
[arXiv] [journal] (†) N. K. Phat, Y. Lee, S. Park, N. P. Long. (2025). Risk Factors for Tuberculosis Treatment Outcomes: A Statistical Learning-based Exploration using the SINAN Database with Incomplete Observations. BMC Med. Inform. Decis. Mak., 25(301).
[arXiv] [journal] (†) K-Y. Bak, S. Park. (2025). Linear Covariance Selection Model Via l1-penalization. Comput. Stat. Data Anal., 209, 108176.
[arXiv] [journal] (†) N. T. N. Tien, S. Park, N. P. Long et al. (2025). EasyPubPlot: A Shiny Web Application for Rapid Omics Data Exploration and Visualization. J. Proteome Res., In press.
2024
[arXiv] [journal] M. Lee, S. Park et al. (2024). Dynamics of COVID-19 risk perception and predictors in South Korea: a two-year longitudinal study from the pandemic’s beginning (2020–2021). J. Risk Res., 27(8), 1010–1027.
[arXiv] [journal] (†) Y. Lee, S. Park. (2024). High-dimensional Missing Data Imputation Via Undirected Graphical Model. Stat. Comput., 34(160).
[arXiv] [journal] S. Park et al. (2024). Variable Selection in Bayesian Multiple Instance Regression using Shotgun Stochastic Search. Comput. Stat. Data Anal., 196, 107954.
[arXiv] [journal] D. Xiong, S.Park et al. (2024). Bayesian Multiple Instance Classification based on Hierarchical Probit Regression. Ann. Appl. Stat., 18(1), 80-99.
2023
[arXiv] [journal] N. H. Anh, N. P. Long, S. Park et al. (2023). Molecular and metabolic phenotyping of hepatocellular carcinoma for biomarker discovery: a meta-analysis. Metabolites, 23(11), 1112.
[arXiv] [journal] K. P. Nhung, N. P. Long, S. Park et al. (2023). Alterations of Lipid-Related Genes during Anti-Tuberculosis Treatment: Insights into Host Immune Responses and Potential Transcriptional Biomarkers. Front. Immunol., 14, xx-yy.
[arXiv] [journal] T. T. M. Nhung, N. P. Long, S. Park et al. (2023). Genome-wide kinase-MAM interactome screening reveals the role of CK2A1 in MAM Ca2+ dynamics linked to DEE-66. PNAS, 120(32), e2303402120.
[arXiv] [journal] S. Park et al. (2023). Sparse Hanson–Wright inequality for a bilinear form of sub-Gaussian variables. Stat., 12( 1), e539.
[arXiv] [journal] (†) S. Kim, S. Park et al. (2023). Robust Tests for Scatter Separability Beyond Gaussianity. Comput. Stat. Data Anal., 179, 107633.
2022
[arXiv] [journal] (†) Y. Kim, S. Park et al. (2022). Multiple Instance Neural Networks Based on Sparse Attention for Cancer Detection using T-cell Receptor Sequences, BMC Bioinform., 23, 469.
[arXiv] [journal] T. Lu, S. Park et al. (2022). Netie: inferring the evolution of neoantigen–T cell interactions in tumors, Nat Methods., 19, 1480-1489.
[arXiv] [journal] N. P. Long, S. Park et al. (2022). Comprehensive lipid and lipid-related gene investigations of host immune responses to characterize metabolism-centric biomarkers for pulmonary tuberculosis. Sci Rep., 12, 13395.
[arXiv] [journal] S. Park and J. Lim. (2022). An Overview of Heavy-Tail Extensions of Multivariate Gaussian Distribution and Their Relationships. J. Appl. Stat., 49(13), 3477-3494.
[arXiv] [journal] S. J Kim, N. P. Ahn, and S. Park et al. (2022). Metabolic and Cardiovascular Benefits of Apple and Apple-Derived Products: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Nutr. 9:766155.
[arXiv] [journal] N. P. Long, S. Park et al. (2022). Molecular Perturbations in Pulmonary Tuberculosis Patients Identified by Pathway-level Analysis of Plasma Metabolic Features. PLOS ONE. 17(1):e0262545.
2021
[arXiv] [journal] N. P. Long, S. Park et al. (2021). A 10-gene biosignature of tuberculosis treatment monitoring and treatment outcome prediction. Tuberculosis, 131, 102138.
[arXiv] [journal] S. Park et al. (2021). Estimating High-dimensional Covariance and Precision Matrices under General Missing Dependence. Electron. J. Statist., 15(2), 4868-4915.
[arXiv] [journal] S. J Kim, S. Park et al. (2021). Effects of Oats (Avena sativa L.) on Inflammation: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Frontiers in Nutrition, 8, 595.
[arXiv] [journal] S. J Kim, S. Park et al. (2021). Effects of β-Cryptoxanthin on Improvement in Osteoporosis Risk: A Systematic Review and Meta-Analysis of Observational Studies. Foods, 10(2), 296.
[arXiv] [journal] T. Lu, S. Park et al. (2021). Overcoming Expressional Drop-outs in Lineage Reconstruction from Single-Cell RNA-Sequencing Data, Cell Reports, 34(1), 108589.
2020
[arXiv] [journal] N. P. Long, S. Park et al. (2020). Isolation and metabolic assessment of cancer cell mitochondria. ACS Omega, 5(42), 27304-27313.
[arXiv] [journal] (*) D-K Lee and S. Park et al. (2020). Research Quality-Based Multivariate Modeling for Comparison of the Pharmacological Effects of Black and Red Ginseng. Nutrients, 12(9), 2590.
[arXiv] [journal] N. P. Long, S. Park et al. (2020). Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. J. Anal. Test., 4, 183–197.
[arXiv] [journal] S. Park et al. (2020). Bayesian multiple instance regression for modeling immunogenic neoantigens. Stat. Methods in Med. Res., 29(10), 3032-3047.
2019
[arXiv] [journal] S. Park et al. (2020). Clustering of Longitudinal Interval Valued Data via Mixture Distribution under Covariance Separability. J. Appl. Stat., 47(10), 1739-1756.
[arXiv] [journal] (†) H. Choi, S. Park et al. (2019). Testing for stochastic order in interval-valued data . Korean J. Appl. Stat., 32(6), 879-887. (written in Korean), English version is available at arXiv.
[arXiv] [journal] S. Park and J. Lim. (2019). Non-asymptotic Rate for High-dimensional Covariance Estimation with Non-independent Missing Observations. Stat. Probabil. Lett., 153, 113-123.
[arXiv] [journal] S. Park et al. (2019). Interval Prediction on the Sum of Binary Random Variables Indexed by a Graph. Commun. Stat. Appl. Methods., 26, 261-272.
[arXiv] [journal] N. P. Long, S.Park et al. (2019). An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer. Cancers, 11(2), 155.
[arXiv] [journal] N. P. Long, S.Park et al. (2019). High-throughput omics and statistical learning integration for the discovery and validation of novel diagnostic signatures in colorectal cancer. Int. J. Mol. Sci., 20(2), 296.
[arXiv] [journal] N. P. Long, S.Park et al. (2019). Efficacy of integrating a novel 16-gene biomarker panel and machine learning algorithms to improve the differential diagnosis of rheumatoid arthritis and osteoarthritis. J. Clin. Med. , 8(1), 50.
2018
[arXiv] [journal] S. Park et al. (2019). Permutation Based Testing on Covariance Separability. Comput. Stat., 34(2), 865-883.
[arXiv] [journal] D. Lee, S. Park et al. (2018). In vitro tracking of intracellular metabolism-derived cancer volatiles via isotope labeling. ACS Cent. Sci., 4(8), 1037-1044.
2017 Impact Factor: 11.228
[arXiv] [journal] W. Son, S. Park, J. Lim. (2018). Independence and maximal volume of d-dimensional random convex hull. Commun. Stat. Appl. Methods., 25:79-89.
[arXiv] [journal] S. Park et al. Linear Shrinkage Convexification of Penalized Linear Regression With Missing Data (under revision)
S. Cho, S. Park et al. Absolute Correlation Sum Statistics and its Application to Finding Island Variables in High Dimensional Data (submitted)
(*) C. Kim, S. Park et al. Media Framing and Risk Perception: Consecutive research during the first year of COVID-19 in South Korea (in progress)
[arXiv] [journal] S. Oh, S. Park, and H. Park. Nonparametric Linear Discriminant Analysis for High Dimensional Matrix-Valued Data (under revision)
S. Kim, G. Kim, S. Park et al., Association between risk perception of COVID-19 and voting intention for governing party candidate during the end phase of the pandemic (submitted)
[arXiv] [journal] (#) M. Shin, J. Lim, S. Park. Graph Estimation Based on Neighborhood Selection for Matrix-variate Data (under revision)
[SNU arXiv] High-dimensional Covariance/Precision Matrix Estimation under General Missing Dependency.
(Invited) High-dimensional Missing Data Imputation Via Undirected Graphical Model, @IASC-ARS Interim Conference 2024, Taipei (Taiwan).
(Invited) Multiple Instance Learning / High-dimensional Covariance/Precision Matrix Estimation, @통계데이터사이언스 세미나(2024), University of Seoul, Seoul (Korea).
(Poster) High-dimensional Missing Data Imputation Via Undirected Graphical Model, @Statistics in the Age of AI, Washington, D.C. (USA).
(Invited) Introduction to Multiple Instance Learning. @학과세미나 (2024), Sungshin Women's University, Seoul (Korea).
(Invited) Testing Correlation Structure of Matrix-variate Data. @IMS-APRM 2024, Melbourne (Australia).
(Invited) Testing Correlation Structure of Matrix-variate Data. @The 3rd Big Data Colloquium (2023), Chonnam University (online).
(Invited) Variable Selection in Bayesian Multiple Instance Regression using Shotgun Stochastic Search. @EcoSta 2023, Toyko (Japan).
(Invited) Covariance Matrix Estimation with Incomplete Data and its Applications, @신진통계학자 학술대회(2023), Gyeonggi-do (Korea).
(Invited) Covariance Matrix Estimation with Incomplete Data and its Applications, @제 10회 통계세미나(2022), Korea University, Seoul (Korea).
(Contributed) A Survey of Multiple Instance Supervised Learning (다중 개체 지도 학습 문제에 대한 연구 개요), @한국통계학회(2022하계), Seoul (Korea).
(Contributed) Bayesian Multiple Instance Regression Model for Modeling Immunogenic Neoantigens, @한국통계학회(2021춘계) (online)
(Invited) Introduction to Multiple Instance Learning. @Colloquium (2021), Ajou University (online).
(Contributed) Estimating High-dimensional Covariance and Precision Matrices under General Missing Dependence, @Bernoulli-IMS One World Symposium 2020 (online)
(Invited) Estimating High-dimensional Covariance and Precision Matrices under General Missing Dependence, @KISS annual meeting 2020 (online)
(Contributed) Estimating High-dimensional Covariance and Precision Matrices under General Missing Dependence, @Joint Statistical Meetings 2020 (online)
(Invited) Estimating High-dimensional Covariance and Precision Matrices under General Missing Dependence. South Taiwan Statistics Conference 2020.
Selected as the Korean representative in CIPS-JSS-KSS Young Researcher's session
Cancelled due to COVID-19, but resumed in 2021 (online)
(Contributed) Modeling Immunogenic Neoantigens Using a Bayesian Multiple Instance Regression Model. @2019 WNAR/IMS/JR meeting, Oregon, PO (USA).
(Poster) Permutation Based Testing on Covariance Separability, @Joint Statistical Meetings 2017, Baltimore, MD (USA).
(Poster) Estimation of a bivariate convex function, @ERCIM WG CMStatistics 2016, Seville (Spain).
KISS Outstanding Students Paper Award, Korean International Statistics Society, 2020
IMS Hannan Graduate Student Travel Award, Institute of Mathematical Statistics, 2020
Best Doctoral Thesis Award of College of Natural Sciences, Seoul National University, Fall 2019
Long-term StudyAbroad Scholarship Award from the Office of International Affairs, Seoul National University, 2017 (Research institute : Quantitative Biomedical Research Center at UT Southwestern Medical Center / Research period : 18.01.02 ~ 18.07.31)