A season is a division of the year[1] based on changes in weather, ecology, and the number of daylight hours in a given region. On Earth, seasons are the result of the axial parallelism of Earth's tilted orbit around the Sun.[2][3][4] In temperate and polar regions, the seasons are marked by changes in the intensity of sunlight that reaches the Earth's surface, variations of which may cause animals to undergo hibernation or to migrate, and plants to be dormant. Various cultures define the number and nature of seasons based on regional variations, and as such there are a number of both modern and historical cultures whose number of seasons varies.

Seasons often hold special significance for agrarian societies, whose lives revolve around planting and harvest times, and the change of seasons is often attended by ritual. The definition of seasons is also cultural. In India, from ancient times to the present day, six seasons or Ritu based on south Asian religious or cultural calendars are recognised and identified for purposes such as agriculture and trade.


Seasons 2023 Download


Download 🔥 https://tlniurl.com/2y4AB1 🔥



The Earth's orbit exhibits approximate axial parallelism, maintaining its direction towards Polaris (the "North Star") year-round. This is one of the primary reasons for the Earth's seasons, as illustrated by the diagram to the right.[5][6][7][8] Minor variation in the direction of the axis, known as axial precession, takes place over the course of 26,000 years, and therefore is not noticeable to modern human civilization.

The seasons result from the Earth's axis of rotation being tilted with respect to its orbital plane by an angle of approximately 23.4 degrees.[9] (This tilt is also known as "obliquity of the ecliptic".)

Regardless of the time of year, the northern and southern hemispheres always experience opposite seasons. This is because during summer or winter, one part of the planet is more directly exposed to the rays of the Sun than the other, and this exposure alternates as the Earth revolves in its orbit. For approximately half of the year (from around March 20 to around September 22), the Northern Hemisphere tips toward the Sun, with the maximum amount occurring on about June 21. For the other half of the year, the same happens, but in the Southern Hemisphere instead of the Northern, with the maximum around December 21. The two instants when the Sun is directly overhead at the Equator are the equinoxes. Also at that moment, both the North Pole and the South Pole of the Earth are just on the terminator, and hence day and night are equally divided between the two hemispheres. Around the March equinox, the Northern Hemisphere will be experiencing spring as the hours of daylight increase, and the Southern Hemisphere is experiencing autumn as daylight hours shorten.

Compared to axial parallelism and axial tilt, other factors contribute little to seasonal temperature changes.[4] The seasons are not the result of the variation in Earth's distance to the Sun because of its elliptical orbit.[10] In fact, Earth reaches perihelion (the point in its orbit closest to the Sun) in January, and it reaches aphelion (the point farthest from the Sun) in July, so the slight contribution of orbital eccentricity opposes the temperature trends of the seasons in the Northern Hemisphere.[11] In general, the effect of orbital eccentricity on Earth's seasons is a 7% variation in sunlight received.

In the temperate and polar regions, seasons are marked by changes in the amount of sunlight, which in turn often causes cycles of dormancy in plants and hibernation in animals. These effects vary with latitude and with proximity to bodies of water. For example, the South Pole is in the middle of the continent of Antarctica and therefore a considerable distance from the moderating influence of the southern oceans. The North Pole is in the Arctic Ocean, and thus its temperature extremes are buffered by the water. The result is that the South Pole is consistently colder during the southern winter than the North Pole during the northern winter.

In meteorological terms, the solstices (the maximum and minimum insolation) do not fall in the middles of summer and winter. The heights of these seasons occur up to 7 weeks later because of seasonal lag. Seasons, though, are not always defined in meteorological terms.

In astronomical reckoning by hours of daylight alone, the solstices and equinoxes are in the middle of the respective seasons. Because of seasonal lag due to thermal absorption and release by the oceans, regions with a continental climate, which predominate in the Northern Hemisphere, often consider these four dates to be the start of the seasons as in the diagram, with the cross-quarter days considered seasonal midpoints. The length of these seasons is not uniform because of Earth's elliptical orbit and its different speeds along that orbit.[13]

Most calendar-based partitions use a four-season model to demarcate the warmest and coldest seasons, which are further separated by two intermediate seasons. Calendar-based reckoning defines the seasons in relative rather than absolute terms, so the coldest quarter-year is considered winter even if floral activity is regularly observed during it, despite the traditional association of flowers with spring and summer. The major exception is in the tropics where, as already noted, the winter season is not observed.

The four seasons have been in use since at least Roman times, as in Rerum rusticarum of Varro[14] Varro says that spring, summer, autumn, and winter start on the 23rd day of the sun's passage through Aquarius, Taurus, Leo, and Scorpio, respectively. Nine years before he wrote, Julius Caesar had reformed the calendar, so Varro was able to assign the dates of February 7, May 9, August 11, and November 10 to the start of spring, summer, autumn, and winter.

As noted, a variety of dates and even exact times are used in different countries or regions to mark changes of the calendar seasons. These observances are often declared "official" within their respective areas by the local or national media, even when the weather or climate is contradictory.[15] However, they are mainly a matter of custom only, and have not generally been proclaimed by governments north or south of the equator for civil purposes.[16][17]

Meteorological seasons are reckoned by temperature, with summer being the hottest quarter of the year and winter the coldest quarter of the year. In 1780 the Societas Meteorologica Palatina (which became defunct in 1795), an early international organization for meteorology, defined seasons as groupings of three whole months as identified by the Gregorian calendar.[18]According to this definition, for temperate areas in the northern hemisphere, spring begins on 1 March, summer on 1 June, autumn on 1 September, and winter on 1 December. For the southern hemisphere temperate zone, spring begins on 1 September, summer on 1 December, autumn on 1 March, and winter on 1 June.[19][20] In Australasia the meteorological terms for seasons apply to the temperate zone that occupies all of New Zealand, New South Wales, Victoria, Tasmania, the south-eastern corner of South Australia and the south-west of Western Australia, and the south east Queensland areas south of Brisbane.

In Sweden and Finland, meteorologists and news outlets use the concept of thermal seasons, which are defined based on mean daily temperatures.[21] The beginning of spring is defined as when the mean daily temperature permanently rises above 0 C. The beginning of summer is defined as when the temperature permanently rises above +10 C, autumn as when the temperature permanently falls below +10 C, and winter as when the temperature permanently falls below 0 C. In Finland, "permanently" is defined as when the mean daily averaged temperature remains above or below the defined limit for seven consecutive days. (In Sweden the number of days ranges from 5 to 7 depending on the season.) This implies two things:

Astronomical timing as the basis for designating the temperate seasons dates back at least to the Julian Calendar used by the ancient Romans. As mentioned above, Varro wrote that spring, summer, autumn, and winter start on the 23rd day of the sun's passage through Aquarius, Taurus, Leo, and Scorpio, respectively, and that (in the Julian Calendar) these days were February 7, May 9, August 11, and November 10. He points out that the lengths are not equal, being 91 (in non-leap years), 94, 91, and 89 days for spring, summer, autumn, and winter, respectively.[14] The midpoints of these seasons were March 24 or 25, June 25, September 25 or 26, and December 24 or 25, which are near to the equinoxes and solstices of his day.

Pliny the Elder, in his Natural History, mentions the two equinoxes and the two solstices and gives the lengths of the intervals (values which were fairly correct in his day but are no longer very correct because the perihelion has moved from December into January). He then defines the seasons of autumn, winter, spring, and summer as starting half-way through these intervals.[31] He gives "the eighth day to the Kalends of January" (December 25) as the date of the winter solstice, though actually it occurred on the 22nd or 23rd at that time.[32]

Nowadays the astronomical timing has winter starting at the winter solstice, spring at the spring equinox, and so on. This is used worldwide, although some countries like Australia, New Zealand,[33] Pakistan and Russia prefer to use meteorological reckoning. The precise timing of the seasons is determined by the exact times of the sun reaching the tropics of Cancer and Capricorn for the solstices and the times of the sun's transit over the equator for the equinoxes, or a traditional date close to these times.[34]

These "astronomical" seasons are not of equal length, because of the elliptical nature of the orbit of the Earth, as discovered by Johannes Kepler. From the March equinox it currently takes 92.75 days until the June solstice, then 93.65 days until the September equinox, 89.85 days until the December solstice and finally 88.99 days until the March equinox. Thus the time from the March equinox to the September equinox is 7.56 days longer than from the September equinox to the March equinox. e24fc04721

download youtube mod background play

loud dog barking sound download mp3 free

windows server 2016 update download stuck at 0

download housecall

download the dictator 2