I am a condensed-matter theorist. I have been working on strongly-correlated quantum systems in the form of bulk crystals or artificial heterostructures, such as unconventional superconductivity, magnetism, and electronic transport. For correlated systems, an exact solution is almost impossible to find except for some special cases. Therefore, in many cases, some kind of approximation has to be employed depending on the problem. I use a variety of techniques ranging from analytical ones to numerical ones. These include Hartee-Fock approximation, auxiliary-particle methods (slave boson, slave fermion and Schwinger boson), spin-wave expansion, bosonization, density functional theory, dynamical mean field theory, and exact diagonalization methods. My interest is still growing, covering quantum spin liquids, correlated topological systems, such as fractional Chern insulators, and spin transport and spintronics.
S. Okamoto and N. Nagaosa, Critical enhancement of the spin Hall effect by spin fluctuations, npj Quantum Mater. 9, 29 (2024).
S. Okamoto, N. Mohanta, E. Dagotto, and D. N. Sheng, Topological flat bands in a kagome lattice multiorbital system, Commun. Phys. 5, 198 (2022).
P. Laurell and S. Okamoto, Dynamical and thermal magnetic properties of the Kitaev spin liquid candidate α-RuCl3, npj Quantum Mater. 5, 2 (2020).
S. Okamoto, T. Egami, and N. Nagaosa, Critical spin fluctuation mechanism for the spin Hall effect, Phys. Rev. Lett. 123, 196603 (2019).
N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, and D. Xiao, Stacking-dependent magnetism in bilayer CrI3, Nano Lett. 18, 7658 (2018).
S. Okamoto and D. Xiao, Transition-metal oxide (111) bilayers, J. Phys. Soc. Jpn. 87, 041006 (2018). Special Topics: New ab initio Approaches to Exploring Emergent Phenomena in Quantum Matter.
S. Okamoto, J. Nichols, C. Sohn, S. Y. Kim, T. W. Noh, and H. N. Lee, Charge transfer in iridate-manganite superlattices, Nano Lett. 17, 2126 (2017).
Z. Qiu, J. Li, D. Hou, E. Arenholz, A. T. N’Diaye, A. Tan, K. Uchida, K. Sato, S. Okamoto, Y. Tserkovnyak, Z. Q. Qiu, and E. Saitoh, Spin-current probe for phase transition in an insulator, Nat. Commun. 7, 12670 (2016).
S. Okamoto, Doped Mott insulators in (111) bilayers of perovskite transition-metal oxides with the strong spin-orbit coupling, Phys. Rev. Lett. 110, 066403 (2013).
D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun. 2, 596 (2011).
S. Okamoto, D. Sénéchal, M. Civelli, and A.-M. Tremblay, Dynamical electronic nematicity from Mott physics, Phys. Rev. B 82, 180511(R) (2010). Editors' Suggestion
P. Yu, J.-S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C.-H. Yang, Q. He, J. X. Zhang, S.Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y.-H. Chu, D. A. Arena, C.-C. Kao, L.W. Martin, and R. Ramesh, Interface ferromagnetism and orbital reconstruction in BiFeO3-La0.7Sr0.3MnO3 heterostructure, Phys. Rev. Lett. 105, 027201 (2010).
S. Okamoto and T. A. Maier, Enhanced superconductivity in superlattices of high-Tc cuprates, Phys. Rev. Lett. 101, 156401 (2008).
S. Okamoto, Nonlinear transport through strongly correlated two-terminal heterostructures: A Dynamical Mean-Field Approach, Phys. Rev. Lett. 101, 116807 (2008).
S. Okamoto and A. J. Millis, Electronic reconstruction at an interface between a Mott insulator and a band insulator, Nature (London) 428, 630 (2004).