Figure 2. A retweet network on Twitter, among people sharing posts about US politics. Links represent retweets of posts around the 2010 US midterm election. A directed link from A to B indicates that B retweets A. Red and blues nodes correspond to users using hashtags such as #tcot and #p2, associated with conservative (red) and progressive (blue) messages respectively. The community structure of the network indicates that people retweet preferentially posts aligned with their political orientation.
Networks have been studied for a long time. The concept dates back to 1736, when Leonhard Euler drew the first graph to solve the famous problem of the seven bridges of Königsberg. In the 1930s Jacob Moreno designed the first social networks (sociograms) to represent the interactions between school students, laying the foundations of social network analysis. For a long time investigations have been limited to relatively small networks, due to the difficulty of data collection and the limited computing power. With the advent of the Web and of powerful computational facilities it has finally become possible to assemble and study large networks. Network science took off in 1998 with the seminal paper of Duncan Watts and Steven Strogatz, in which it was shown that several networks existing in nature, society and technology have the small-world property. The next decisive step was the empirical discovery by Albert-László Barabási and coworkers, that most real networks have broad degree distributions, highlighting the existence of hubs, i.e. nodes with many neighbors, which play a key role for the structure and function of networks.
In the last years, scholars have studied the properties of these networks, proposed models to explain their genesis and evolution, investigated how dynamical processes develop on these special graphs. For an accessible introduction to this field see our book. I am especially interested in the problem of the identification of community structure in networks. Real networks display a modular structure where nodes form groups (communities, clusters, or modules), with nodes of each group sharing more connections with the other nodes of the group than with the rest of the network. The network in Figure 2 has two communities, including the red and the blue nodes, respectively. Detecting communities may lead to the discovery of functional units of biological networks, like protein-protein interaction networks or metabolic networks, to the identification of topics in citation networks of papers and the Web graph, to disclose unknown properties of nodes, etc.. But the problem is hard and still open, in spite of the many approaches which have been suggested over the years. The main difficulty is that it is an ill-defined problem, where there is ambiguity about what communities are, and consequently about the validation of the algorithms that detect them.
Computational social science
Society is complex. Social interactions usually involve few individuals, yet non-trivial global phenomena can emerge. For instance, a consensus on some issue can be reached after many discussions between pairs of individuals or within small groups, even if the whole community is large. Similar dynamics can explain how people end up to share a common culture, or language, or the emergence of collective motion (Figure 3). The global organization of the system can be achieved via simple local interactions between people, just like phase transitions are originated by elementary interactions between neighboring particles/spins. This parallelism is the motivation of the countless applications of statistical physics tools and models to describe large scale social phenomena, like opinion formation, cultural dissemination, language origin and evolution, emergence of hierarchies from initially egalitarian societies, etc.