Presentation

(International)

Conference

First-authored papers

[1] S. Lee, T. Nakajima, S. Amakawa, N. Ishihara, and K. Masu, “Scalable wideband RF LNA and VCO based on CMOS inverter topologies,” G-COE PICE International Symposium on Silicon Nano Devices, p. 55, Oct. 2009. (Poster presentation, no review)

[2] S. Lee, S. Amakawa, N. Ishihara, and K. Masu, “Low-phase-noise wide-frequency-range ring-VCO-based scalable PLL with subharmonic injection locking in 0.18 mm CMOS,” IEEE MTT-S International Microwave Symposium, pp. 1178–1181, May. 2010.

[3] S. Lee, S. Amakawa, N. Ishihara, and K. Masu, “Wide-frequency-range low-noise injection-locked ring VCO for UWB applications in 90nm CMOS,” International Conference on Solid State Devices and Materials, pp. 109–101, Sep. 2010.

[4] S. Lee, S. Amakawa, N. Ishihara, and K. Masu, “Low-phase-noise wide-frequency-range differential ring-VCO with non-integral subharmonic locking in 0.18 mm CMOS,” IEEE European Microwave Conference, pp. 1611–1614, Sep. 2010.

[5] S. Lee, S. Amakawa, S. Tanoi, N. Ishihara, and K. Masu, “High-frequency half-integral subharmonic locked ring-VCO-based scalable PLL in 90 nm CMOS,” IEEE Asia-Pacific Microwave Conference, pp. 586–589, Dec. 2010.

[6] S. Lee, H. Ito, S. Amakawa, S. Tanoi, N. Ishihara, and K. Masu, “1.2–17.6 GHz ring-VCO-based PLL with injection locking in 65 nm CMOS,” International Conference on Solid State Devices and Materials, pp. 1163–1164, Sep. 2011.

[7] S. Lee, S. Ikeda, H. Ito, S. Tanoi, N. Ishihara, and K. Masu, “An inductorless injection-locked PLL with 1/2- and 1/4-integral subharmonic locking in 90nm CMOS,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 189–192, Jun. 2012.

[8] S. Lee, K. Takano, R. Dong, S. Amakawa, T. Yoshida, and M. Fujishima, “A 300-μW K-band oscillator with high-Q open-stub capacitor in 55-nm CMOS DDC,” IEEE International Symposium on Frequency Integration Technology, Aug. 2018.

[9] S. Lee, K. Takano, R. Dong, S. Amakawa, T. Yoshida, and M. Fujsihima, “A 37-GHz-input divide-by-36 injection-locked frequency divider with 1.6-GHz lock range,” IEEE Asian Solid-State Circuits Conference, pp. 219–222, Nov. 2018.

[10] S. Lee, R. Dong, T. Yoshida, S. Amakawa, S. Hara, A. Kasamatsu, J. Sato, and M. Fujsihima, “An 80Gb/s 300GHz-band single-chip CMOS transceiver,” IEEE International Solid-State Circuits Conference, pp. 170–171, Feb. 2019.

[11] S. Lee, R. Dong, S. Hara, K. Takano, S. Amakawa, T. Yoshida, and M. Fujsihima, “300-GHz wireless data transmission system with low-SNR CMOS RF front end,” Global Symposium on Millimeter Waves, pp. 32–34, May 2019.

[12] S. Lee, K. Takano, S. Hara, R. Dong, S. Amakawa, T. Yoshida, and M. Fujishima, “A −40-dBc integrated-phase-noise 45-GHz sub-sampling PLL with 3.9-dBm output and 2.1% DC-to-RF efficiency,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 175–178, June 2019.

[13] S. Lee, R. Dong, S. Hara, K. Takano, S. Amakawa, T. Yoshida, and M. Fujishima, “A 6-mW-DC-power 300-GHz CMOS receiver for near-field wireless communications,” IEEE MTT-S International Microwave Symposium, pp. 504–507, June 2019.

[14] S. Lee, S. Amakawa, T. Yoshida, Y. Morishita, Y. Kashino, S. Hara, and M. Fujishima,  “300-GHz CMOS-based wireless link using 40-dBi Cassegrain antenna for IEEE Standard 802.15.3d,” IEEE International Symposium on Frequency Integration Technology, pp. 161–163, Sep. 2020.

[15] S. Lee, M. Fujita, M. Toyoda, S. Hara, S. Amakawa, T. Yoshida, and M. Fujishima, “Effect of an electromagnetic wave absorber on 300-GHz short-range wireless communications,” IEEE International Symposium on Frequency Integration Technology, pp. 108–110, Sep. 2020. (Poster).

[16] S. Lee, S. Hara, S. Amakawa,  T. Yoshida, and M. Fujishima, “A 32 Gb/s CMOS receiver with analog carrier recovery and synchronous QPSK demodulation,” IEEE MTT-S International Microwave Symposium, June 2021. (Late breaking news)

[17] S. Lee, S. Hara, R. Dong, K. Takano, S. Amakawa, T. Yoshida, and M. Fujishima, “A 272-GHz CMOS analog BPSK/QPSK demodulator for IEEE 802.15.3d,” IEEE European Solid-State Circuits Conference, Sep. 2021. 

[18] S. Lee, N. Ishihara, H. Ito, "mmW/THz applications for healthcare," International Symposium on Biomedical Engineering (ISBE2021), Dec. 2021. (Requested presentation, no review)

[19] S. Lee,  K. Katayama, K. Takano, M. Fujita, M. Toyoda, S. Hara, I. Watanabe, A. Kasamatsu, S. Amakawa, T. Yoshida, and M. Fujishima, "300-GHz back-radiation on-chip-antenna measurement with electromagnetic-wave-absorption sheet," IEEE International Conference on Microelectronic Test Structures, Mar. 2022. 

[20] S. Lee, M. Fujita, M. Toyoda, K. Takano, S. Hara, I. Watanabe, A. Kasamatsu, and H. Ito, "Sub-terahertz electromagnetic-wave absorber for future wireless communication," IEEE International Symposium on Frequency Integration Technology, Aug. 2022. 

[21] S. Lee, M. Fujita, M. Toyoda, K. Takano, S. Hara, I. Watanabe, A. Kasamatsu, S. Amakawa, T. Yoshida, and H. Ito, "A transparent band-pass-filtered reflector for IEEE Standard 802.15.3d," IEEE Asia-Pacific Microwave Conference, Dec. 2022. 

[22] S. Lee, K. Takano, and T. Yoshida, "Study on measurement-accuracy improvement method using electromagnetic-wave absorbers," International Symposium on Biomedical Engineering, Nov. 2023. (no review)

[23]  S. Lee, M. Takayasu, A. Asami, and Y. Sawaki, "Millimeter-wave/terahertz absorber/reflector/radome," The 3rd Germany-Japan Beyond 5G/6G Research Workshop, Feb. 2024.  (no review, poster)

[24] S. Lee, "RLGC-model-based film-type electromagnetic-wave absorber design," The 25th Workshop on Synthesis And System Integration of Mixed Information technologies, Mar. 2024.

[25] S. Lee, K. Takano, S. Hara, I. Watanabe, A. Kasamatsu, T. Yoshida, and Y. Sawaki, "A sub-terahertz wide-incident-angle transparent radio-wave absorber,"  4th URSI Atlantic Radio Science Meeting , May 2024. (to be presented)

[26] To be submitted

[27] To be submitted

[28] To be submitted

[29] To be submitted



Co-authored papers

[1] N. Ishihara, S. Lee, K. Nakano, T. Nakajima, S. Amakawa, and K. Masu, “Physical design challenge in nanoscale CMOS RF circuit,” International Symposium on Technology Evolution for Silicon Nano-Electronics (ISTESNE), pp. 39, Jun. 2010. (No review)

[2] T. Kamimura, S. Lee, S. Tanoi, H. Ito, N. Ishihara, and K. Masu, “A 0.1-V 13-GHz transformer-based quadrature VCO with a capacitor coupling technique in 90nm CMOS,” International Conference on Solid State Devices and Materials, pp. 1061–1062, Sep. 2011.

[3] N. Kanemaru, S. Ikeda, T. Kamimura, S. Lee, S. Tanoi, H. Ito, N. Ishihara, and K. Masu, “A ring-VCO-based injection-locked frequency multiplier using a new pulse generation technique in 65nm CMOS,” IEEE International SoC Design Conference, pp. 32–35, Nov. 2011.

[4] A. Shirane, M. Otsuru, S. Lee, S. Yonezawa, S. Tanoi, H. Ito, N. Ishihara, and K. Masu, “A process-scalable RF transceiver for short range communication in 90nm Si CMOS,” IEEE Radio Frequency Integrated Circuits Symposium, pp .455-458, Jun. 2012.

[5] S. Ikeda, S. Lee, T. Kamimura, H. Ito, N. Ishihara, and K. Masu, “Fractionally injection-locked frequency multiplication technique with multi-phase ring VCO,” International Conference on Solid State Devices and Materials, pp. 1158–1597, Sep. 2012.

[6] S. Ikeda, T. Kamimura, S. Lee, N. Kanemara, H. Ito, N. Ishihara, and K. Masu, “A 0.5-V 5.5-GHz class-C-VCO-based PLL with ultra-low-power ILFD in 65 nm CMOS,” IEEE Asian Solid-State Circuits Conference, pp. 357–360, Nov. 2012.

[7] S. Ikeda, T. Kamimura, S. Lee, H. Ito, N. Ishihara, and K. Masu, “A sub-1 mW 5.5-GHz PLL with digitally-calibrated ILFD and linearized varactor for low supply voltage operation,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 439–442, June 2013.

[8] M. Takayasu, A. Shirane, S. Lee, D. Yamane, H. Ito, X. Mi, H. Inoue, F. Nakazawa, S. Ueda, N. Ishihara, and K. Masu, “An 8-ch, 20-V output CMOS switching driver with 3.3-V power supply for integrated MEMS devices controlling,” International Conference on Solid State Devices and Materials, pp. 116–117, Sep. 2013.

[9] S. Ikeda, T. Kamimura, S. Lee, H. Ito, N. Ishihara, and K. Masu, “A transformer-based current-reuse QVCO with a capacitor coupling technique in 180 nm CMOS,” IEEE European Microwave Integrated Circuits Conference, pp. 93–96, Oct. 2013.

[10] S. Ikeda, T. Kamimura, S. Lee, H. Ito, N. Ishihara, and K. Masu, “A 950 mW 5.5-GHz low voltage PLL with digitally-calibrated ILFD and linearized varactor,” IEEE Asian and South Pacific Design Automation Conference, pp. 23–24, Jan. 2014.

[11] S. Ikeda, S. Lee, S. Yonezawa, Y. Hou, M. Takayasu, T. Hamada, Y. Ishikawa, H. Ito, N. Ishihara, and K. Masu, “A 0.5-V 5.8-GHz ultra-low-power RF transceiver for wireless sensor network in 65 nm CMOS,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 29–32, May 2014.

[12] S. Ikeda, S. Lee, H. Ito, N. Ishihara, and K. Masu, “A 0.5-V 5.8-GHz highly linear VCO with back-gate tuning technique” International Conference on Solid State Devices and Materials, pp. 984–985, Sep. 2014.

[13] S. Ikeda, S. Lee, H. Ito, N. Ishihara, and K. Masu, “A 0.52-V 5.7-GHz low noise sub-sampling PLL with dynamic threshold MOSFET,” IEEE Asian Solid-State Circuits Conference, pp. 365–368, Nov. 2014.

[14] Y. Ishikawa, S. Lee, S. Yonezawa, S. Ikeda, Y. Hou, M. Takayasu, T. Hamada, H. Ito, N. Ishihara, and K. Masu, “A 0.5-V 5.8-GHz low power RF transceiver for a wireless sensor network,” Thailand-Japan MicroWave Workshop, Nov. 2014. (No review)

[15] S. Ikeda, S. Lee, H. Ito, N. Ishihara, and K. Masu, “A 0.5-V 5.8-GHz current-reuse-VCO-based PLL with amplitude regulation technique,” Thailand-Japan MicroWave Workshop, Nov. 2014. (No review)

[16] Y. Ishikawa, S. Lee, S. Yonezawa, S. Ikeda, Y. Hou, M. Takayasu, T. Hamada, H. Ito, N. Ishihara, and K. Masu, “A 0.5-V 5.8-GHz low power RF transceiver for a wireless sensor network,” Vietnam-Japan MicroWave Workshop, Nov. 2014. (No review)

[17] S. Ikeda, S. Lee, H. Ito, N. Ishihara, and K. Masu, “A 0.5-V 5.8-GHz current-reuse-VCO-based PLL with amplitude regulation technique,” Vietnam-Japan MicroWave Workshop, Nov. 2014. (No review)

[18] S. Ikeda, S. Lee, S. Yonezawa, Y. Hou, M. Takayasu, T. Hamada, Y. Ishikawa, H. Ito, N. Ishihara, and K. Masu, “A 0.5-V 5.8-GHz low-power asymmetrical QPSK/OOK transceiver for wireless sensor network,” IEEE Asian and South Pacific Design Automation Conference, pp. 40–41, Jan. 2015.

[19] Y. Ishikawa, S. Lee, S. Yonezawa, S. Ikeda, Y. Hou, T. Hamada, H. Ito, N. Ishihara, and K. Masu, “A 0.5-V 1.56-mW 5.5-GHz RF transceiver IC module with J-shaped folded monopole antenna,” IEEE International Symposium on Circuits and Systems, pp. 1219–1221, May 2015.

[20] D. Woo, S. Lee, J. Jung, S. Kim, and D. Kong, “Design of an inspired Bull’s eye antenna for conformal structures,” International Symposium on Microwave and Optical Technology, June 2017.

[21] D. Woo, J. Park, H. Park, S. Lee, J. Shin, and D. Kong, “A side lobe recognition method of sum-delta monopulse in a circular array,” International Symposium on Microwave and Optical Technology, June 2017.

[22] K. Takano, R. Dong, S. Lee, S. Amakawa, T. Yoshida, and M. Fujishima, “A 239-315 GHz CMOS frequency doubler designed by using a small-signal harmonic model,” IEEE European Microwave Integrated Circuits Conference, pp. 109–112, Sep. 2018.

[23] R. Dong, K. Katayama, K. Takano, S. Lee, S. Amakawa, T. Yoshida, and M. Fujishima, “79–85GHz CMOS amplifier with 0.35 V supply voltage,” IEEE European Microwave Integrated Circuits Conference, pp. 37–40, Sep. 2018.

[24] S. Hara, K. Takano, K. Katayama, R. Dong, S. Lee, I. Watanabe, N. Sekine, A. Kasamatsu, T. Yoshida, S. Amakawa, and M. Fujishima, “300-GHz CMOS transceiver for terahertz wireless communication,” IEEE Asia-Pacific Microwave Conference, pp. 429–431, Nov. 2018.

[25] S. Amakawa, A. Takeshige, S. Hara, R. Dong, S. Lee, T. Yoshida, S. Amakawa, M. Fujishima, K. Masu, and H. Ito, “Causal characteristic impedance determination using calibration comparison and propagation constant,” IEEE ARFTG Microwave Measurement Conference, Jan. 2019.

[26] K. Ono, S. Lee, M. Fujishima, H. Ito, and S. Amakawa, “Millimeter-wave CMOS amplifier with negative-capacitance feedback using half-wave transformer,” International Symposium on Biomedical Engineering, pp. 192–193, Nov. 2019. (No review)

[27] T. Ichikawa, A. Uchiyama, K. Shibata, S. Iida, S. Lee, N. Ishihara, K. Machida, K. Masu, and H. Ito, “A 3-D capacitive-detection electrode for a single gold proof-mass three-axis MEMS accelerometer,” Inertial, Mar. 2021. 

[28] T. Hagiwara, N. Yamaki, K. Sekine, H. Sakai, K. Sahara, K. Takano, S. Hara, S. Lee, R. Dong, S. Tanoi, S. Kubo, S. Miura, A. Kasamatsu, T. Yoshida, S. Amakawa, K. Sakakibara, Y. Umeda, and M. Fujishima, A 258-GHz CMOS transmitter with phase-shifting architecture for phased-array systems,” IEEE MTT-S International Microwave Symposium, June 2021. (Final List@Student Paper Competition)

[29]  A. Uchiyama, T. Ichikawa, K. Shibata, S. Iida, S. Lee, N. Ishihara, K. Machida, K. Masu, and H. Ito, “A MEMS accelerometer with a single axis two proof masses for a wide detection range,Transducers, June 2021.

[30] S. Hara, R. Dong, S. Lee, K. Takano, N. Toshida, S. Tanoi, T. Hagino, M. H. Mubarak, N. Sekine, I. Watanabe, A. Kasamatsu, K. Sakakibara, S. Kubo, S. Miura, Y. Umeda, T. Yoshida, S. Amakawa, and M. Fujishima, "A 76-Gbit/s 265-GHz CMOS receiver," IEEE IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov. 2021. 

[31] S. Amakawa, S. Lee, K. Tokgoz, and H. Ito, "Visualizing small-signal responses of a nonlinear RF circuit under large signal operating conditions," International Symposium on Biomedical Engineering, Dec. 2021. ( no review)

[32] M. Fujita, S. Lee, K. Takano, M. Toyoda, S. Hara, I. Watanabe, and A. Kasamatsu, "Development of terahertz EM-wave absorber," IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM2022), Aug. 2022.

[33] Z. Li, S. Lee, N. Ishihara, and H. Ito, "Low-jitter CMOS inverter-based RC oscillator with voltage-integration feedback for sensor interface," International Conference on Solid State Devices and Materials (SSDM), Sep. 2022. 

[34] S. Amakawa, R. Sugimoto,  K. Tokgoz, S. Lee, and H. Ito, "Signal-flow-graph analysis of weakly nonlinear RF circuits," International Symposium on Biomedical Engineering, Dec. 2022. ( no review)

[35] T. Yoshida, S. Amakawa, S. Lee, M. Fujita, K. Takano, S. Hara, I. Watanabe, and A. Kasamatsu, "Ultra-wideband electromagnetic-wave absorber/reflector for beyond 5G applications," The 1st Germany-Japan Beyond 5G/6G Research Workshop, Apr. 2023. (no review, poster)

[36] S. Amakawa, R. Sugimoto, K. K. Tokgoz, S. Lee, H. Ito, and R. Kishikawa, "Signal-flow-graph analysis of weakly nonlinear microwave circuits around a large-signal operating point ," IEEE RADIO & WIRELESS WEEK 2024,  Jan. 2024. (invited (journal paper session))

[37] xx, S. Lee, submitted

[38] xx, S. Lee, xx, submitted



Invited talk

[1] S. Lee, S. Amakawa, T. Yoshida, and M. Fujishima, "300-GHz CMOS-based wireless link for future communication," IEEE International Symposium on Frequency Integration Technology (RFIT2021 Workshop), Aug. 2021.

[2] S. Lee, M. Fujita, M. Toyoda, K. Takano, S. Hara, I. Watanabe, A. Kasamatsu, and H. Ito, "Ultra-wideband electromagnetic-wave absorber for IEEE 802.15.3d,"  Global Symposium on Millimeter Waves, May 2022. (Reviewed)

[3] S. Lee, S. Amakawa, T. Yoshida, and M. Fujishima, "A 300-GHz analog-demodulation CMOS receiver for IEEE 802.15.3d," Global Symposium on Millimeter Waves, May 2022. 

[4] S. Lee, Y. Morishita, S. Amakawa, T. Yoshida, and M. Fujishima, "300-GHz self-heterodyne-mixing-receiver-based wireless data transmission," IEEE International Symposium on Frequency Integration Technology, Aug. 2022. 

[5] S. Lee, "Sub-terahertz radio-wave absorber/radome/reflector design," International Session: The NextG: Worldwide Research on 5G/6G/NTN , 2024 KIEES Winter Conference, Feb. 2024

[6] S. Lee, xxx, Nov. 2024. (to be presented) 


Joint workshop/talk

[1] S. Lee and H. Ito, “An inductorless injection-locked PLL with 1/2- and 1/4-integral subharmonic locking in 90nm CMOS,” Intel Hillsboro, June 2012.

[2] A. Shirane, S. Lee, and  H. Ito,  “A process-scalable RF transceiver for short range communication in 90nm Si CMOS,” Intel Hillsboro, June 2012.

[3] S. Lee, "A 37-GHz-input divide-by-36 injection-locked frequency divider with 1.6-GHz lock range," (presented at A-SSCC2018),  "300-GHz CMOS transceiver for terahertz wireless communication," (presented at APMC2018), National Taiwan University, Taiwan, Nov. 2018.

[4] S. Lee, "An 80Gb/s 300GHz-band single-chip CMOS transceiver," Acacia Communications, UK, Mar. 2019.

[5] S. Lee, "An 80Gb/s 300GHz-band single-chip CMOS transceiver," IMEC, Belgium, Mar. 2019.

[6] S. Lee, "An 80Gb/s 300GHz-band single-chip CMOS transceiver," IHP, Germany, Mar. 2019.

[7] S. Lee, "A 40-dBc integrated-phase-noise 45-GHz sub-sampling PLL with 3.9-dBm output and 2.1% DC-to-RF efficiency," "A 6-mW-DC-power 300-GHz CMOS receiver for near-field wireless communications," Hiroshima University, Japan, June 2019. (with Prof. W. Y. Choi@Oklahoma State University)

[8] S. Lee, "300-GHz CMOS-based wireless link for future communication," Ajou University, South Korea, Dec. 2023.