Salehin Lab
Google Scholar Link
https://scholar.google.com/citations?user=Dcjz2_YAAAAJ&hl=en&oi=ao
14. Salehin, M. Emerging roles of auxin in plant abiotic stress tolerance. Physiologia Plantarum. 2024;176:e14601.
13. Ligaba-Osena, A*., Salehin, M* et al. Running Article Title: Transcriptomic Analysis of the Responses to Long-Term treatment with Low Calcium in Eragrostis tef. Scientific Reports, 12:19552, 2022. *Equal contribution first author.
12. Bagchi, R*., Tinker-Kullberg, R*., Salehin, M* et al, Polyvalent Guide RNAs for CRISPR antivirals. iScience, 25 (11):105333, 2022. *Equal contribution first author.
11. Numan, M., Khan, A.L., Asaf, S., Salehin, M., Beyene, G., Tadele, Z and Ligaba-Osena, A. From traditional breeding to cutting edge genome editing techniques for yield improvement in the ancient grain tef (Eragrostis tef). Plants, 5;10(4):628, 2021.
10. Salehin, M., Li, B., Tang, M., Katz, E., Song, L., Ecker, J.R., Kliebenstein, D and Estelle, M. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications 10, Article number: 4021, 2019.
9. Bagchi, R., Melnyk, CW; Christ, C; Winkler, M; Kirchsteiger, K; Salehin, M; Mergner, J; Niemeyer, M; Schwechheimer, C; Calderón Villalobos, LIA and Estelle, M. The Arabidopsis ALF4 protein is a regulator of SCF E3 ligases. EMBO J 37, 255-268, 2018.
8. Shani, E*., Salehin, M*., Zhang, Y., Sanchez, S.E., Doherty, C., Wang, R., Castillejo Mangado, C., Song, L., Tal, I., Pisanty, O., Ecker, J.R., Kay, S.A., Pruneda-Paz, J and Estelle, M. Plant Stress Tolerance Requires Auxin-Sensitive Aux/IAA Transcriptional Repressors. Current Biology 27, 1–8, 2017. *Equal contribution first author.
7. Salehin, M and Estelle, M. Ethylene Prunes Translation. Cell 163, 553-554, 2015.
6. Salehin, M., Bagchi, R and Estelle, M. SCFTIR1/AFB-Based Auxin Perception: Mechanism and Role in Plant Growth and Development. Plant Cell 27, 9-19, 2015.
5. Salehin, M., Bagchi, R., Huang, Y-S., Adeyemo, O.S., Sherrier, D.J. and Dickstein, R. The Medicago truncatula NIP/LATD transporter is essential for nodulation and appropriate root architecture. Biological Nitrogen Fixation. First Edition. Edited by Frans J. de Bruijn. Volume 2, 593-598, 2015.
4. Salehin M., Huang, Y-S., Bagchi, R., Sherrier, D, Dickstein, R. Allelic differences in Medicago truncatula NIP mutants correlate with their encoded proteins’ transport activities in planta. Plant Signaling and Behavior 2, 1-5, 2013.
3. Bagchi R*., Salehin M*., Adeyemo O.S., Salazar C., Shulaev V., Sherrier D.J and Dickstein, R. Functional assessment of the Medicago NIP/LATD protein demonstrates that it is a high affinity nitrate transporter. Plant Physiology 160, 906-16, 2012. *Equal contribution first author.
2. Yendrek, C.R., Lee, Y-C., Morris, V., Liang, Y, Pislariu, C.I., Burkhart, G., Meckfessel, M.H., Salehin, M., Kessler, H., Wessler, H., Melanie, L., Lutton, H., Teillet, A., Sherrier, D.J., Journet, E-P., Harris, J.M., and Dickstein, R. A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. The Plant Journal 62, 100-112, 2010. * Cover article and F1000 recommended.
1. Salehin, M., Ghosh, A.K., Mallick, P.K., and Bhattacharya, T.K. Molecular characterization, polymorphism and association study of lysozyme gene with milk production and somatic cell trait in Bos indicus × Bos taurus cattle. Animal 3, 623-31, 2009.