Gauri Jain, Dominik Rothenhäusler, Kirk Bansak, and Elisabeth Paulson. CTRL Your Shift: Clustered Transfer Residual Learning for Many Small Datasets
Yujing Jeong, Rames Johari, Dominik Rothenhäusler, and Emily Fox. Optimal Empirical Risk Minimization under Temporal Distribution Shifts
Aditya Ghosh and Dominik Rothenhäusler (2025). Assumption-robust causal inference
Ivy Zhang and Dominik Rothenhäusler (2025). Data quality or data quantity? Prioritizing data collection under distribution shift with the data usefulness coefficient
Ying Jin, Naoki Egami, and Dominik Rothenhäusler (2024). Beyond Reweighting: On the Predictive Role of Covariate Shift in Effect Generalization
Yujin Jeong and Dominik Rothenhäusler (2024). Out-of-distribution generalization under random, dense distributional shifts.
Ying Jin, Kevin Guo and Dominik Rothenhäusler (2023). Diagnosing the role of observable distribution shift in scientific replications. Under review.
Kirk Bansak, Elisabeth Paulson and Dominik Rothenhäusler (2023). Random Distribution Shift in Refugee Placement: Strategies for Building Robust Models. AISTATS 2024.
Suyash Gupta and Dominik Rothenhäusler (2023). The s-value: evaluating stability with respect to distributional shifts. Accepted at NeurIPS 2023.
Dominik Rothenhäusler and Peter Bühlmann (2023). Distributionally robust and generalizable inference. Statistical Science.
Kevin Guo and Dominik Rothenhäusler (2023). On the statistical role of inexact matching in observational studies. Biometrika.
Ying Jin and Dominik Rothenhäusler (2023). Modular regression. Accepted at Journal of Machine Learning Research.
Yujin Jeong and Dominik Rothenhäusler (2022). Calibrated inference: statistical inference that accounts for both sampling uncertainty and distributional uncertainty. Under review.
Jaime Roquero Gimenez and Dominik Rothenhäusler (2022). Causal aggregation: estimation and inference of causal effects by constraint-based data fusion. Journal of Machine Learning Research.
Ying Jin and Dominik Rothenhäusler (2021). Tailored inference for finite populations: conditional validity and transfer across distributions. Biometrika.
Dominik Rothenhäusler (2020). Model selection for estimation of causal parameters. Accepted at Electronic Journal of Statistics, 2024.
Dominik Rothenhäusler and Bin Yu (2019). Incremental causal effects. Preprint arXiv:1907.13258.
Dominik Rothenhäusler, Nicolai Meinshausen, Peter Bühlmann, and Jonas Peters (2021). Anchor regression: heterogeneous data meets causality. Journal of the Royal Statistical Society: Series B. Preprint arXiv:1801.06229.
Dominik Rothenhäusler, Peter Bühlmann, and Nicolai Meinshausen (2018). Causal dantzig: fast inference in linear structural equation models with hidden variables under additive interventions. Annals of Statistics. Preprint arXiv:1706.06159.
Dominik Rothenhäusler*, Jan Ernest*, and Peter Bühlmann (2018). Causal inference in partially linear structural equation models: identifiability and estimation. Annals of Statistics. Preprint arXiv:1607.05980.
Dominik Rothenhäusler, Nikolaus Schweizer, and Nora Szech (2017). Guilt in voting and public good games. European Economic Review, 101:664-681.
Michael Sokolov, Jonathan Ritscher, Nicola MacKinnon, Jean-Marc Bielser, David Brühlmann, Dominik Rothenhäusler, Gian Thanei, Miroslav Soos, Matthieu Stettler, Jonathan Souquet, et al. (2017). Robust factor selection in early cell culture process development for the production of a biosimilar monoclonal antibody. Biotechnology progress, 33(1):181-191.
Dominik Rothenhäusler, Nicolai Meinshausen, and Peter Bühlmann (2016). Confidence intervals for maximin effects in inhomogeneous large-scale data. In Statistical Analysis for High-Dimensional Data, pages 255-277.
Dominik Rothenhäusler*, Christina Heinze*, Jonas Peters, and Nicolai Meinshausen (2015). Backshift: Learning causal cyclic graphs from unknown shift interventions. In Advances in Neural Information Processing Systems, pages 1513-1521.
*Authors contributed equally.