2024 (2)

34. Ajinkya Anjikar, Keita Iwasaki, Rajapandian Paneerselvam, Arti Hole, Murali Krishna C, Hemanth Noothalapati, Shilpee Dutt*, and Tatsuyuki Yamamoto,* Discernable Machine Learning methods for Raman microspectroscopic stratification of mitoxantrone-induced drug-resistant cells in acute myeloid leukemia, Journal of Raman Spectroscopy, 2024 (Just Accepted), (Impact Factor - 2.55)

33. Divya S. Parimi1, Jayasree Kumar 1, Rajapandiyan Panneerselvam, Sreenivasulu T, and Anil K. Suresh Sustainable golden nanoflowers grafted food-waste derived biotemplate for the direct SERS-detection of carcinogenic herbicides from agro-farms, Materials Today Chemistry, Volume 36, March 2024, 101985 (Impact Factor - 7.3)

2023 (6)

32. Xiao-Bing Zheng, Sheng-Hong Liu, Rajapandiyan Panneerselvam, Yue-Jiao Zhang, An Wang, Fan-Li Zhang, Shangzhong Jin, and Jian-Feng Li, Clinical detection of total homocysteine in human serum using surface-enhanced Raman spectroscopy, Vibrational Spectroscopy, Volume 126, May 2023, 103526, (Impact Factor - 2.3)

31. Hui Yu,   Zhilan Yang,   Shiying Fu,  Yuejiao Zhang,   Rajapandiyan Panneerselvam, Baoqiang Li,  Lin Zhang,   Zehui Chen,  Xin Wang,  and  Jianfeng Li, Intelligent convolution neural network-assisted SERS to realize highly accurate identification of six pathogenic Vibrio, Chemical Communications, 2023, 59, 5779-5782 (Impact Factor - 7.2)

30. Tian Wang, Hong-Mei Li, Bao-Ying Wen, Rajapandiyan Panneerselvam, Yue-Jiao Zhang, An Wang, Fan-Li Zhang, Shangzhong Jin, and Jian-Feng Li, Au Nanocakes as a SERS Sensor for on Site and Ultrafast Detection of Dioxins, Vibrational Spectroscopy, Volume 126, May 2023, 103518, (Impact Factor - 2.3)

29. Ajinkya Anjikar, Priyanka Jadhav,  Arti Hole,  Rajapandian Paneerselvam, Arvind Ingle, Tatsuyuki Yamamoto,  Hemanth Noothalapati, and  Murali Krishna C, Removal of hemolysis interference in serum Raman spectroscopy by multivariate curve resolution analysis for accurate classification of oral cancers, Sens. Diagn., 2023, Advance Article (Impact factor - 4.35)

28. Anish Das, Sebastian Fehse, Matthias Polack, Rajapandiyan Panneerselvam, and Detlev Belder* Surface-Enhanced Raman Spectroscopic Probing in Digital Microfluidics through a Microspray Hole, Analytical Chemistry, 2023, 95, 2, 1262–1272, (Impact factor - 8.0)

2022 (3)

27. Rajapandiyan Panneerselvam,* Hasan Sadat,   Eva-Maria Höhn,   Anish Das,   Hemanth Noothalapati, and  Detlev Belder, Microfluidics and surface-enhanced Raman spectroscopy, a win–win combination?, Lab on a Chip, 2022, 22, 665 - 682, Advance article (Impact factor -6.7)

26. Mahima Chandel, Kamaljit Kaur, Bandana Sahu, Sandeep Sharma, Rajapandiyan Panneerselvam,* VijayakumarShanmugam,* Promise of nano-carbon to the next generation sustainable agriculture, Carbon, 188, 2022, 461-481 (Impact factor - 9.7)

2021 (1)

25. Hai-Long Wang, En-Ming You, Rajapandiyan Panneerselvam, Song-Yuan Ding, and Zhong-Qun Tian, Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light: Science & Applications volume 10, Article number: 161 (2021) (Impact factor- 20.6)

2020 (1)

24. Benjamin Krafft, Rajapandiyan Panneerselvam, David Geissler & Detlev Belder, A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes. Anal. Bioanal. Chem. 2020  (Impact factor: 3.2)

2019 (1)

23Eva-Maria Höhn, Rajapandiyan Panneerselvam, Anish Das, and Detlev Belder* Raman spectroscopic detection in continuous micro-flow using a chip-integrated silver electrode as electrically regenerable SERS substrate. Anal. Chem. 2019, 91 (15), 9844–9851. (Impact factor: 8.0)

2018 (2)

22. Rajapandiyan Panneerselvam,   Guo-Kun Liu,   Yao-Hui Wang,   Jun-Yang Liu,   Song-Yuan Ding,   Jian-Feng Li,  De-Yin Wu,  and  Zhong-Qun Tian,  Surface-enhanced Raman spectroscopy: Bottlenecks and future directions. Chem. Commun. 54, (2018). (Impact factor: 6.1)

21. Panneerselvam, R. et al. A rapid and simple chemical method for the preparation of Ag colloids for surface-enhanced Raman spectroscopy using the Ag mirror reaction. Vib. Spectrosc. 2018, 98. (Impact factor: 1.8)

2017 (2)

20. Yang, J.-L. et al. Quantitative detection using two-dimension shell-isolated nanoparticle film. J. Raman Spectrosc. 48, (2017). (Impact factor: 3.1)

19. Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerselvam, R. & Tian, Z.-Q. Core-shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117, (2017).  (Impact factor: 72)

2016 (11)

18. Chen, Y.-L., Panneerselvam, R., Wu, D.-Y. & Tian, Z.-Q. Theoretical study of normal Raman spectra and SERS of benzyl chloride and benzyl radical on silver electrodes. J. Raman Spectrosc. 48, (2017). (Impact factor: 3.1)

17. Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, (2016). (Impact factor: 76.6

16. Zhang, Y.-J. et al. Probing the Electronic Structure of Heterogeneous Metal Interfaces by Transition Metal Shelled Gold Nanoparticle-Enhanced Raman Spectroscopy. J. Phys. Chem. C 120, (2016). (Impact factor: 4.4)

15. Zhao, Y. et al. A facile method for the synthesis of large-size Ag nanoparticles as efficient SERS substrates. J. Raman Spectrosc. 47, (2016). (Impact factor: 3.1)

14.  Peng, X. et al. Microwave-Assisted Synthesis of Highly Dispersed PtCu Nanoparticles on Three-Dimensional Nitrogen-Doped Graphene Networks with Remarkably Enhanced Methanol Electrooxidation. ACS Appl. Mater. Interfaces 8, (2016).(Impact factor: 8.0

13. Lin, S.-S. et al. Stable 16.2% Efficient Surface Plasmon-Enhanced Graphene/GaAs Heterostructure Solar Cell. Adv. Energy Mater. 6, (2016). (Impact factor: 29.6)

12. Tian, X.-D. et al. Self-assembly of subwavelength nanostructures with symmetry breaking in solution. Nanoscale 8, (2016). (Impact factor: 6.9)

11. Li, C.-Y. et al. In-situ electrochemical shell-isolated Ag nanoparticles-enhanced Raman spectroscopy study of adenine adsorption on smooth Ag electrodes. Electrochim. Acta 199,(2016) (Impact factor: 5.1)

10. Wen, B.-Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces. Analyst 141, (2016). (Impact factor: 4.0)

9. Dong, J.-C., Panneerselvam, R., Lin, Y., Tian, X.-D. & Li, J.-F. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy at Single-Crystal Electrode Surfaces. Adv. Opt. Mater. 4, (2016). (Impact factor: 7.1)

8. Cabello, G., Chen, X.-J., Panneerselvam, R. & Tian, Z.-Q. Potential dependent thiocyanate adsorption on gold electrodes: a comparison study between SERS and SHINERS. J. Raman Spectrosc. 47, (2016).  (Impact factor: 3.1)

2015 (5)    

7. Li, J.-F. et al. Electrochemical Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Correlating Structural Information and Adsorption Processes of Pyridine at the Au(hkl) Single Crystal/Solution Interface. J. Am. Chem. Soc. (2015). (Impact factor: 14.3)  

6. Rajapandiyan, P., Tang, W.-L. & Yang, J. Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array. Food Control (2015). (Impact factor: 5.4)

5. Li, C.-Y. et al. ‘Smart’ Ag Nanostructures for Plasmon-Enhanced Spectroscopies. J. Am. Chem. Soc. 137, (2015). (Impact factor: 14.3)

4. Li, C.-Y. et al. In Situ Monitoring of Electrooxidation Processes at Gold Single Crystal Surfaces Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 137, (2015). (Impact factor: 14.3)

3. Zhang, W. et al. Large scale synthesis of pinhole-free shell-isolated nanoparticles (SHINs) using improved atomic layer deposition (ALD) method for practical applications. J. Raman Spectrosc. 46 (2015). (Impact factor: 3.1)

2014 (1)

2. Rajapandiyan, P. & Yang, J. Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. J. Raman Spectrosc. 45, 574–580 (2014). (Impact factor: 3.1)

 2012 (1)

1. Rajapandiyan, P. & Yang, J. Sensitive Cylindrical SERS Substrate Array for Rapid Microanalysis of Nucleobases. Anal. Chem. 84, 10277–10282 (2012). (Impact factor: 8.0