Search this site
Embedded Files
Dr Jiapu Zhang
  • Welcome to the Personal Home Page of Dr Jiapu Zhang!
    • book Review from the Association for Computing Machinery
    • Comuptational Studies of Drug Discovery/Design for the Treatment of Prion Diseases
    • ACM Computing Reviews for my Springer BOOKS
Dr Jiapu Zhang
  • Zhang JP (2025) 张家普博士百篇科普论文集(卷一),II+xx+565页, https://youtu.be/qVJv2h8m4f4, ⓒsciencenet. 

  • New Springer Book: Molecular Dynamics and Optimization Studies of α-Synuclein Protein Structures

https://link.springer.com/book/10.1007/978-981-10-8815-5    

https://link.springer.com/book/10.1007/978-94-017-7318-8

https://link.springer.com/book/9783031367724 

    https://youtu.be/ikL0gh7jYJM, https://youtu.be/5PrSq-xBr5Y


Teaching experiences

1. Theory of Computation

2. Advanced Algebra

3. Mathematics Modeling

4. Model Building and Solving and Software

5. Programming Languages, and Data Structures

6.  Computing Chemistry and Advanced Organic Chemistry

7. Tutoring experiences in many courses of Mathematics, Statistics, and Computer Computing

8. ..

Publications

PhD thesis

  • Zhang JP, Derivative-Free Hybrid Methods in Global Optimization and Their Applications, PhD thesis, The University of Ballarat (Australia), February 2005. (Identifier http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/34054

Identifier vital:3522 Identifier https://library.federation.edu.au/search/a?searchtype=t&searcharg=Derivative-free+hybrid+methods+in+global+optimization+and+their+&searchscope=4&SORT=D) "Revolutionary optimization methods that pushed the boundaries of global optimization, forever changing the game." - a review from KW.

MSc thesis

  • Zhang JP, A global and superlinearly convergent algorithm for nonlinear nondifferential convex programming problems with a generalized Armijo line-search, Masters (rsearch) degree thesis, Institute of Operations Research (at Qufu Normal University China), 1996, arXiv1309.0931

Springer Monographs - (Reviews-from中国海洋大学.PDF)

  • Zhang JP (2026) Molecular Dynamics and Optimization Studies of α-Synuclein Protein Structures - Mechanism Underlying the Parkinson's Disease and Movement Disorders, 


  •  Zhang JP (2023) Optimization-based Molecular Dynamics Studies of SARS-CoV-2 Molecular Structures - Research on COVID-19, Springer Cham, ISBN 978-3-031-36772-4, xx+953 pages, NLM Unique ID 9918863688806676. (Hardcover ISBN 978-3-031-36772-4 published on 17/10/2023, Softcover ISBN 978-3-031-36775-5 published on 30/10/2024, eBook ISBN 978-3-031-36773-1 published on 16/10/2023, DOI: 10.1007/978-3-031-36773-1). A book review from ACM Computing Reviews

https://www.computingreviews.com/review/review_review.cfm?review_id=147951


  • Zhang JP (2018) Molecular Dynamics Analyses of Prion Protein Structures - The Resistance to Prion Diseases Down Under, Springer Singapore, ISBN 978-981-10-8814-8, xxix+375 pages, NLM Unique ID 101746134.   (Hardcover ISBN 978-981-10-8814-8 published on 07/08/2018, Softcover ISBN 978-981-13-4247-9 published on 23/12/2018, eBook ISBN 978-981-10-8815-5 published on 20/07/2018, MyCopy softcover ISBN 978-981-10-8816-2, DOI: 10.1007/978-981-10-8815-5) "Unlocking the secrets of prion proteins, revealing insights into the resistance against prion disesese." - a review from KW

 

  • Zhang JP (2015) Molecular Structures and Structural Dynamics of Prion Proteins and Prions - Mechanism Underlying the Resistance to Prion Diseases, Springer Dordrecht, ISBN 978-94-017-7317-1, xix+355 pages (Association for Computing Machinery wrote 2 pages' Book Review), NLM Unique ID 101676710.  (Hardcover ISBN 978-94-017-7317-1 published on 25/09/2015, Softcover ISBN 978-94-024-0445-6 published on 29/10/2016, eBook ISBN 978-94-017-7318-8 published on 14/09/2015, MyCopy softcover ISBN 978-94-017-7319-5, DOI: 10.1007/978-94-017-7318-8). A book review from ACM Computing Reviews

https://www.computingreviews.com/review/review_review.cfm?review_id=144750


 

Journal Papers (selected)

  • Zhang JP (2024) Classifications of Mathematical Studies of Prion(s). 

This article is to do research on the classifications of prions in the MathSciNet database. Observations from the discussion of this article allow us to obtain at least six classes of MathSciNet study for prion(s). These classes are at different levels of study: (i) at disease population level, (ii) at brain or neurons-nerves-or-spine level, (iii) at cell level, (iv) at molecule level, (v) at polymer level, and (vi) with presence of others. These classifications may be helpful to us for the prion disease treatments. 

(i) At disease population level [1, 13, 19, 31, 33, 47, 49], the populations of Sup35 prion yeast [1], with Parkinson’s disease (PD) [13], prion Creutzfeldt-Jacob Disease (CJD) [19], Chronic wasting disease (CWD) [33], etc. are studied. (ii) The studies at at brain or neurons-nerves-or-spine level can be seen from [3, 5, 2, 42-43, 59]. (iii) The studies at cell level are mainly considering yeast prion cells [20, 34, 36, 38, 48, 60]. Most of the models are in the class that is at molecule level [2, 14, 15, 16, 21, 23, 25, 27-29, 37,40-41, 44, 46, 50-57, 61]; some models are prions in the presence of chaperone [4, 6, 8, 11, 24, 51], interferons [10], suPrP [12], strains/variants [17, 22, 35, 40, 45, 46], interacting with Aβ [7, 13, 18, 30], and evolution with impulse effects [32]; prions are also used as a test/detecting/diagnosis to MD, optimization, PMCA technologies [9, 26, 35, 39].


  • Zhang JP (2024) Molecular dynamics, optimisation, and AlphaFold studies of wild-type frog prion proteins (frog-PrPCs), (invited paper).

In Section 5.3 of Springer eBook ISBN 978-981-10-8815-5 entitled "Molecular Dynamics Analyses of Prion Protein Structures", the molecular dynamics (MD) studies on the NMR structure of African clawed frog (Xenopus laevis) prion protein (frog-PrPC, with PDB entry 1XU0) are presented; where the author found that for frog-PrPC its α-helix 1 is not stable and the two β-strands are longer than usual. This research article is to present furthermore MD, optimisation, and AlphaFold results of frog-PrPCs.


  • Zhang JP (2024) Molecular dynamics and optimization studies of horse prion protein wild type and its S167D mutant (invited paper), arXiv:2110.00365, MDPI journal Zoonotic Diseases 4(3): 187-200, DOI:10.3390/zoonoticdis4030017. https://www.mdpi.com/2813-0227/4/3/17 Études de dynamique moléculaire de la protéine prion de cheval de type sauvage et de son mutant S167D By Jiapu Zhang Les maladies à prions, ou encéphalopathies spongiformes transmissibles (EST), sont des maladies neurodégénératives mortelles. Cependant, la maladie à prions n'a pas été signalée chez les chevaux jusqu'à présent; par conséquent, les chevaux sont connus pour être une espèce résistante aux maladies à prions. Le résidu S167 dans la protéine prion du cheval a été cité comme résidu protecteur essentiel pour les chevaux contre les maladies à prions. Comprendre la dynamique conformationnelle des protéines prions est essentiel pour développer des thérapies efficaces. Cet article vise à faire des études de dynamique moléculaire sur la protéine prion de cheval de type sauvage (WT) et son mutant S167D (Mutant) pour comprendre leur dynamique conformationnelle; des résultats intéressants seront discutés. Молекулярно-динамические исследования прионного белка лошади дикого типа и его мутанта S167D By Jiapu Zhang Прионные заболевания, или так называемые трансмиссивные губчатые энцефалопатии (ТГЭ), являются смертельными нейродегенеративными заболеваниями. Однако до настоящего времени о прионных заболеваниях у лошадей не сообщалось, поэтому известно, что лошади являются видом, устойчивым к прионным заболеваниям. Остаток S167 в прионном белке лошади считается важнейшим защитным элементом для лошадей от прионных заболеваний. Понимание конформационной динамики прионных белков является ключом к разработке эффективных методов лечения. Цель этой статьи - провести молекулярно-динамические исследования лошадиного прионного белка дикого типа (WT) и его мутанта S167D (Mutant), чтобы понять их конформационную динамику; будут обсуждаться интересные результаты. Prion diseases or called transmissible spongiform encephalopathies are fatal neurodegenerative diseases characterised by the accumulation of an abnormal prion protein isoform (rich in beta-sheets - about 30% alpha-helix and 43% beta-sheet), which is converted from the normal prion protein (predominant in alpha-helix - about 42% alpha-helix and 3% beta-sheet). However, prion disease has not been reported in horses up to now; therefore, horses are known to be a species resistant to prion diseases. Residue S167 in horse has been cited as critical protective residue for encoding prion protein conformational stability in prion-resistance. According to the protein-only hypothesis, abnormal prion protein is responsible for both spongiform degeneration of the brain and disease transmissibility. Thus, understanding the conformational dynamics of abnormal prion protein from normal prion protein is a key to developing effective therapies. This article is to do molecular dynamics and optimization studies on the horse normal prion protein wild-type and its S167D mutant respectively to understand their conformational dynamics and optimized confirmation; interesting results will be discussed. 野生型马朊病毒蛋白及其突变体S167D的分子动力学研究 by Jiapu Zhang 朊病毒病或传染性海绵状脑病 (TSE) 是致命的神经退行性疾病。然而,迄今为止,还没有关于马感染朊病毒病的报道。因此,马被认为是对朊病毒疾病有抵抗力的物种。马朊病毒蛋白中的残基S167被认为是马对抗朊病毒疾病的重要保护残基。了解朊病毒蛋白的构象动力学对于开发有效的疗法至关重要。本文旨在对野生型(WT)马朊病毒蛋白及其突变体S167D(Mutant)进行分子动力学研究,了解其构象动力学;将讨论有趣的结果。Molekulardynamische Untersuchungen des Pferde-Prionenproteins Wildtyp und seiner S167D-Mutante by Jiapu Zhang Prionenkrankheiten oder transmissible spongiforme Enzephalopathien (TSE) genannt, sind tödliche neurodegenerative Erkrankungen. Eine Prionenkrankheit wurde jedoch bisher bei Pferden nicht gemeldet; Daher ist bekannt, dass Pferde eine Spezies sind, die gegen Prionenkrankheiten resistent ist. Der Rückstand S167 im Prionenprotein von Pferden wurde als kritischer Schutzrückstand für Pferde gegen Prionenkrankheiten angeführt. Das Verständnis der Konformationsdynamik von Prionproteinen ist der Schlüssel zur Entwicklung wirksamer Therapien. Dieser Artikel soll molekulardynamische Studien am Pferde-Prionenprotein-Wildtyp (WT) und seiner S167D-Mutante (Mutante) durchführen, um ihre Konformationsdynamik zu verstehen; Interessante Ergebnisse werden diskutiert. Estudios de dinámica molecular de la proteína priónica de caballo de tipo salvaje y su mutante S167D by Jiapu Zhang. Las enfermedades priónicas, o llamadas encefalopatías espongiformes transmisibles (EET), son enfermedades neurodegenerativas fatales. Sin embargo, hasta ahora no se ha informado de enfermedades priónicas en caballos; por lo tanto, se sabe que los caballos son una especie resistente a las enfermedades priónicas. El residuo S167 en la proteína priónica de caballo se ha citado como residuo protector crítico para caballos contra enfermedades priónicas. Comprender la dinámica conformacional de las proteínas priónicas es clave para desarrollar terapias efectivas. El objetivo de este artículo es realizar estudios de dinámica molecular en la proteína priónica de caballo de tipo silvestre (WT) y su mutante S167D (Mutante) para comprender su dinámica conformacional; se discutirán resultados interesantes./ウマプリオン蛋白質野生型とそのS167D変異体の分子動力学と最適化研究 by Jiapu Zhang 感染性海綿状脳症と呼ばれるプリオン病は,正常なプリオン蛋白質(主にαヘリックス~約42%のαヘリックスと3%のβシート)から変換される異常なプリオン蛋白質アイソフォーム(βシート~約30%のαヘリックスと43%のβシートに富む)の蓄積により特徴付けられる致死的神経変性疾患である。しかし,プリオン病は現在までウマで報告されていない;したがって,ウマはプリオン病に抵抗性の種であることが知られている。ウマの残基S167はプリオン耐性におけるプリオン蛋白質立体配座安定性をコードする重要な保護残基として挙げられている。蛋白質のみの仮説によると,異常なプリオン蛋白質は脳の海綿状変性と疾患伝達性の両方に関与する。したがって,正常プリオン蛋白質由来の異常プリオン蛋白質の立体配座動力学の理解は効果的な治療法開発の鍵である。本論文は,ウマ正常プリオン蛋白質野生型とそのS167D突然変異体に関する分子動力学と最適化研究を,それぞれ,それらの立体配座動力学を理解し,確認を最適化することである。興味深い結果を論じた。


  • Zhang JP (2023) Two polar contacts between GLU290 and ARG4 linking the two monomers of SARS-CoV-2 3CLpro, arXiv: 5182254. Current Topics in Biotechnology 14: 19-33. RT/BT/151, http://www.researchtrends.net/tia/abstract.asp?in=0&vn=14&tid=48&aid=7232&pub=2023&type=3 


  • Zhang JP (2021) Molecular dynamics studies of dog prion protein wild-type and its D159N mutant, Journal of Biomolecular Structure and Dynamics 39 (12): 4234-4242, PMID 32496928, DOI: 10.1080/07391102.2020.1776155. https://www.tandfonline.com/eprint/XEJ6FRKGEUFFY8IM6R7A/full?target=10.1080/07391102.2020.1776155

 

  • Zhang JP (2020) Molecular dynamics studies of the bufallo prion protein structured region at higher temperatures, The Open Bioinformatics Journal 13: 129-136. DOI: 10.2174/1875036202013010129 (Associate Editorial Board Membership annual paper) https://benthamopen.com/contents/pdf/TOBIOIJ/TOBIOIJ-13-129.pdf, https://youtu.be/5PrSq-xBr5Y

 

  • Zhang JP (2020) The classical Minkowski problem: an optimization description, Asia-Pacific Journal of Mathematics and Statistics 2(1):1-4, DOI: 10.11648/10045508 (Editorial Board Membership paper)

 

  • Zhang JP (2019) The polar clasps of a bank vole PrP(168–176) prion protofibril revisiting, Journal of Molecular Modeling 25 (5) 108, PMID 30937536, DOI: 10.1007/s00894-019-3981-z https://rdcu.be/buml4

 

  • Zhang JP (2018) Molecular Dynamics Analyses of Prion Protein Structures (1st ed. 2018 Edition) Springer, ISBN 978-981-10-8814-8, 2018, DOI: 10.1007/978-981-10-8815-5, NLM ID 101746134.

 

  • Zhang JP, Chatterjee S, Wang F (2017) Using graph theory and optimization theory to do data mining the large-scale buffalo prion protein structure database, Operations Research Transactions 21 (2) 73-83, DOI: 10.15960/j.cnki.issn.1007-6093.2017.02.009

 

  • Zhang JP, Wang F (2016) A review on the salt bridge ASP177-ARG163 (O-N) of wild-type rabbit prion protein, Journal of Biomolecular Structure and Dynamics 34 (5) 1020-1028, PMID 26103085, DOI: 10.1080/07391102.2015.1064832. arXiv1408.5269

 

  • Zhang JP, Chatterjee S, Wang F (2016) Molecular dynamics studies on the buffalo prion protein, Journal of Biomolecular Structure and Dynamics 34 (4) 762-777, PMID 26043781, DOI: 10.1080/07391102.2015.1052849. arXiv1503.00051

 

  • Zhang JP, Wang F, Zhang YL (2015) Molecular dynamics studies on the NMR structures of rabbit prion protein wild type and mutants: surface electrostatic charge distributions, Journal of Biomolecular Structure and Dynamics 33 (6) 1326-1335, PMID 25105226, DOI: 10.1080/07391102.2014.947325. arXiv1407.6221

 

  • Zhang JP (2015) Molecular Structures and Structural Dynamics of Prion Proteins and Prions, Springer, ISBN 978-94-017-7317-1, 2015, DOI: 10.1007/978-94-017-7318-8, NLM ID 101676710.

 

  • Zhang JP, Zhang YL (2014) Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins, Journal of Theoretical Biology 343 (1) 70-82, PMID 24184221, DOI: 10.1016/j.jtbi.2013.10.005. arXiv1304.7633

 

  • Zhang JP, Wang F (2014) A survey and a molecular dynamics study on the (central) hydrophobic region of prion proteins, Current Pharmaceutical Biotechnology 15 (11) 1026-1048, PMID 25373387, DOI: 10.2174/1389201015666141103020004 https://youtu.be/ikL0gh7jYJM. arXiv1409.6104

 

  • Zhang JP, Zhang YL (2013) Molecular dynamics studies on 3D structures of the hydrophobic region PrP(109-136), Acta Biochimica et Biophysica Sinica 45(6) 509-519, PMID 23563221, DOI: 10.1093/abbs/gmt031 Free. arXiv1301.0117

 

  • Zhang JP, Hou YT, Wang YJ, Wang CY, Zhang XS (2012) The LBFGS quasi-Newtonian method for molecular modeling prion AGAAAAGA amyloid fibrils, Natural Science 4(12A) 1097-1108, DOI: 10.4236/ns.2012.412A138. arXiv1206.1755

 

  • Zhang JP (2011) The structural stability of wild-type horse prion protein, Journal of Biomolecular Structure and Dynamics 29 (2) 369-377, PMID 21875155, DOI: 10.1080/07391102.2011.10507391. arXiv1104.4616

 

  • Zhang JP, Gao DY, Yearwood J (2011) A novel canonical dual computational approach for prion AGAAAAGA amyloid fibril molecular modeling, Journal of Theoretical Biology 284 (1) 149-157, PMID 21723301, DOI: 10.1016/j.jtbi.2011.06.024. arXiv1107.4104

 

  • Zhang JP, Sun J, Wu CZ (2011) Optimal atomic-resolution structures of prion AGAAAAGA amyloid fibrils, Journal of Theoretical Biology 279 (1) 17-28, PMID 21420420, DOI: 10.1016/j.jtbi.2011.02.012. arXiv1012.2504

 

  • Zhang JP, Liu DDW (2011) Molecular dynamics studies on the structural stability of wild-type dog prion protein, Journal of Biomolecular Structure and Dynamics 28 (6) 861-869, PMID 21469747, DOI: 10.1080/07391102.2011.10508613

 

  • Zhang JP (2011) An effective simulated annealing refined replica exchange Markov chain Monte Carlo Algorithm for the infectious disease model of H1N1 influenza pandemic, World Journal of Modelling and Simulation 7(1) 29-39.

 

  • Zhang JP (2011) Comparison studies of the structural stability of rabbit prion protein with human and mouse prion proteins, Journal of Theoretical Biology 269(1) 88-95‏, PMID 20970434, DOI: 10.1016/j.jtbi.2010.10.020

 

  • Zhang JP (2011) Optimal molecular structures of prion AGAAAAGA amyloid fibrils formatted by simulated annealing, Journal Molecular Modelling 17 (1) 173-179, PMID 20411399, DOI: 10.1007/s00894-010-0691-y

 

  • Zhang JP (2010) Studies on the structural stability of rabbit prion protein probed by molecular dynamics simulations of its wild-type and mutants, Journal of Theoretical Biology 264 (1) 119-122, PMID 20109469, DOI: 10.1016/j.jtbi.2010.01.024

 

  • Bagirov AM, Rubinov AM, Zhang JP (2009) A multidimensional descent method for global optimization, Optimization 58 (5) 611-625, DOI: 10.1080/02331930902943483

 

  • Zhang JP (2009) Studies on the structural stability of rabbit prion protein probed by molecular dynamics simulations, Journal of Biomolecular Structure and Dynamics 27 (2) 159-162, PMID 19583441, DOI: 10.1080/07391102.2009.10507305. with corrections

 

  • Bagirov AM, Rubinov AM, Zhang JP (2005) Local optimization method with global multidimensional search, Journal of Global Optimization 32 (2) 161-179, DOI: 10.1007/s10898-004-2700-0. 

 

  • Ghosh R, Rubinov AM, Zhang JP (2005) Optimization approach for clustering datasets with weights, Optimization Methods and Software 20 335-351, DOI: 10.1080/10556780512331318191

 

  • Bagirov AM, Rubinov AM, Zhang JP (2004) Local Optimization Method with Global Multidimensional Search for Descent, Optimization Online 2004. http://www.optimization-online.org/DB_FILE/2004/01/808.pdf

 

  • Abbass HA, Bagirov AM, Zhang JP (2003) The discrete gradient evolutionary strategy method for global optimization, IEEE The 2003 Congress on Evolutionary Computation, 2003 (CEC '03) Vol 1, pp. 435-442, DOI: 10.1109/CEC.2003.1299608 


  • Bagirov AM, Zhang JP (2003) Comparative analyses of the cutting angle and simulated annealing methods in global optimization, Optimization 52 (4-5) 363-378, DOI: 10.1080/02331930310001611565

 

  • Sun J, Zhang JP (2001) Global convergence of conjugate gradient methods without line search, Annals of Operations Research 103 161-173 DOI: 10.1023/A:1012903105391


  • Ten short articles invited and published by some open access journals:

1. Zhang J (2015) A Complete List of Kernels Used in Support Vector Machines. Biochem Pharmacol (Los Angel) 4(5):195. doi:10.4172/2167-0501.1000195. 

2. Zhang J (2015) A Survey on π-π Stackings and π-Cations in Prion Protein Structures. Biochem Pharmacol (Los Angel) 4: e175. doi:10.4172/2167-0501.1000e175. 

3. Zhang J (2015) An Optimization Model of Molecular Voronoi Cells in Computational Chemistry. Research and Reviews: Journal of Pharmacy and Pharmaceutical Sciences. RRJPPS | Volume 4 | Issue 2 | April - June, 2015. e-ISSN: 2320-1215, p-ISSN: 2322-0112. 97-100. 

4. Zhang J (2016) Mathematical Formulas for Prion All Cross-Structures Listed in the Protein Data Bank. Med chem (Los Angeles) 6: 179-188. doi:10.4172/2161-0444.1000343. 

5. Zhang J (2016) Mathematical Formulas for Some Cross-Β Structures of Human Aβ Protein. Med chem (Los Angeles) 6: 349-355. doi:10.4172/2161-0444.1000369. 

6. Zhang J (2014) Molecular dynamics studies of rabbit, dog, horse, human, mouse and elk prion proteins. Nat Prod Chem Res 2014, 2:5. doi: 10.4172/2329-6836.S1.005. 

7. Zhang J (2016) Packing Rectangular-Box Cells Optimally for the Crystal Structure. Med chem 6: 039. doi:10.4172/2161-0444.1000320. 

8. Zhang J (2013) Recent Advances in the Immunity Research of Rabbits to Prion Diseases. Biochem & Pharmacol 2:e143. doi:10.4172/2167-0501.1000e143. 

9. Zhang J (2015) The Hybrid Idea of (Energy Minimization) Optimization Methods Applied to Study Prion Protein Structures Focusing on the beta2-alpha2 Loop. Biochem Pharmacol (Los Angel) 4: 175. doi:10.4172/2167-0501.1000175.

10. Zhang J (2014) Recent Research Advances in the Glycine xxx-Glycine Motif of Mammalian Prion Proteins. Biochem Pharmacol 3: e151. doi:10.4172/2167-0501.1000e151.


Five invited book-chapters by the NOVA Science Publishers: 

1. Zhang JP (2014) Simulated annealing: in mathematical global optimization computations, hybrid with local or global search and practical applications in crystallography & molecular modelling of prion amyloid fibrils, in [Simulated Annealing: Strategies, Potential Uses and Advantages, Editors Prof. Dr. Marcos Tsuzuki & Prof. Dr. Thiago de Castro Martins, NOVA Science Publishers, ISBN 978-1-63117-268-7], Chapter 1, pp. 1-34. 

2. Zhang JP (2013) A survey on the studies of rabbit prion proteins, in [Rabbits: Biology, Diet and Eating Habits and Disorders, Gianni Adamo & Albert Costanza (editors), NOVA Science Publishers, ISBN 978-1-62948-268-2 (eBook), ISBN 978-1-62948-267-5 (paper Book)], Chapter II, pp. 29-44. 

3. Zhang JP (2012) Molecular dynamics studies on the structural stability of wild-type rabbit prion protein: Surface Electrostatic Charge Distributions, in [Bioinformatics Research: New Developments, Editors Chiheb Battik and Khalil Belhassine, NOVA Science Publishers, Feb 15th 2012, ISBN 978-1-61942-363-3, Hardcover], Chapter 7, pp. 131-138. 

4. Zhang JP (2012) Atomic-resolution structures of prion AGAAAAGA amyloid fibrils, in [Amyloids: Composition, Functions and Pathology, Editors Irene P. Halcheck and Nancy R. Vernon, NOVA Science Publishers, Hauppauge, N.Y., March 1st 2012, ISBN 978-1-62100-538-4, hardcover,], Chapter 10, pp.177-186. 

5. Zhang JP (2012) The nature of the infectious agents: PrP models of resistant species to prion diseases (dog, rabbit and horses), in [Prions and Prion Diseases: New Developments, Editor Jean-Michel Verdier, NOVA Publishers, 2012 2nd Quarter, ISBN 978-1-62100-027-3, Hard cover, June 15th 2012], arXiv1106.4628v2, Chapter 2, pp. 41-48.


Two invited book-chapters by the InTech Open Publisher (http://www.intechopen.com/):

1. Computational Studies of the Structural Stability of Rabbit Prion Protein Compared to Human and Mouse Prion Proteins, DOI: 10.5772/28858, Chapter 14 pages 301-310 of Book " 'Advanced Understanding of Neurodegenerative Diseases', book edited by Raymond Chuen-Chung Chang, ISBN 978-953-307-529-7, Published: December 16, 2011 under CC BY 3.0 license." download at website http://cdn.intechopen.com/pdfs-wm/25213.pdf 

2. Computational Potential Energy Minimization Studies on the Prion AGAAAAGA Amyloid Fibril Molecular Structures, DOI: 10.5772/47733, Chapter 12 pages 297-312 of Book " 'Recent Advances in Crystallography', book edited by Jason B. Benedict, ISBN 978-953-51-0754-5, Published: September 19, 2012 under CC BY 3.0 license.", download at website http://cdn.intechopen.com/pdfs-wm/39124.pdf


Some Papers Linking PubMed:


Molecular dynamics studies of dog prion protein wild-type and its D159N mutant.

Zhang J. J Biomol Struct Dyn. 2021 Aug;39(12):4234-4242. doi: 10.1080/07391102.2020.1776155. Epub 2020 Jun 16.

PMID: 32496928    https://www.tandfonline.com/eprint/XEJ6FRKGEUFFY8IM6R7A/full?target=10.1080/07391102.2020.1776155

 

The polar clasps of a bank vole PrP(168-176) prion protofibril revisiting.

Zhang J. J Mol Model. 2019 Apr 2;25(5):108. doi: 10.1007/s00894-019-3981-z.

PMID: 30937536 https://rdcu.be/buml4

 

A review on the salt bridge ASP177-ARG163 (O-N) of wild-type rabbit prion protein.

Zhang J, Wang F. J Biomol Struct Dyn. 2016 May;34(5):1020-8. doi: 10.1080/07391102.2015.1064832. Epub 2016 Jan 26.

PMID: 26103085

 

Molecular dynamics studies on the buffalo prion protein.

Zhang J, Wang F, Chatterjee S. J Biomol Struct Dyn. 2016;34(4):762-77. doi: 10.1080/07391102.2015.1052849. Epub 2015 Jul 10.

PMID: 26043781

 

A survey and a molecular dynamics study on the (central) hydrophobic region of prion proteins.

Zhang J, Wang F. Curr Pharm Biotechnol. 2014;15(11):1026-48. doi: 10.2174/1389201015666141103020004.

PMID: 25373387  https://youtu.be/ikL0gh7jYJM

 

Molecular dynamics studies on the NMR structures of rabbit prion protein wild type and mutants: surface electrostatic charge distributions.

Zhang J, Wang F, Zhang Y. J Biomol Struct Dyn. 2015;33(6):1326-35. doi: 10.1080/07391102.2014.947325. Epub 2014 Aug 8.

PMID: 25105226

 

Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins.

Zhang J, Zhang Y. J Theor Biol. 2014 Feb 7;342:70-82. doi: 10.1016/j.jtbi.2013.10.005. Epub 2013 Oct 31.

PMID: 24184221

 

Molecular dynamics studies on 3D structures of the hydrophobic region PrP(109-136).

Zhang J, Zhang Y. Acta Biochim Biophys Sin (Shanghai). 2013 Jun;45(6):509-19. doi: 10.1093/abbs/gmt031. Epub 2013 Apr 5.

PMID: 23563221 Free

 

The structural stability of wild-type horse prion protein.

Zhang J. J Biomol Struct Dyn. 2011 Oct;29(2):369-77. doi: 10.1080/07391102.2011.10507391.

PMID: 21875155

 

A novel canonical dual computational approach for prion AGAAAAGA amyloid fibril molecular modeling.

Zhang J, Gao DY, Yearwood J. J Theor Biol. 2011 Sep 7;284(1):149-57. doi: 10.1016/j.jtbi.2011.06.024. Epub 2011 Jun 28.

PMID: 21723301

 

Molecular dynamics studies on the structural stability of wild-type dog prion protein.

Zhang J, Liu DD. J Biomol Struct Dyn. 2011 Jun;28(6):861-9. doi: 10.1080/07391102.2011.10508613.

PMID: 21469747

 

Optimal atomic-resolution structures of prion AGAAAAGA amyloid fibrils.

Zhang J, Sun J, Wu C. J Theor Biol. 2011 Jun 21;279(1):17-28. doi: 10.1016/j.jtbi.2011.02.012. Epub 2011 Mar 21.

PMID: 21420420


Comparison studies of the structural stability of rabbit prion protein with human and mouse prion proteins.

Zhang J. J Theor Biol. 2011 Jan 21;269(1):88-95. doi: 10.1016/j.jtbi.2010.10.020. Epub 2010 Oct 21.

PMID: 20970434

 

Optimal molecular structures of prion AGAAAAGA amyloid fibrils formatted by simulated annealing.

Zhang J. J Mol Model. 2011 Jan;17(1):173-9. doi: 10.1007/s00894-010-0691-y. Epub 2010 Apr 22.

PMID: 20411399

 

Studies on the structural stability of rabbit prion probed by molecular dynamics simulations of its wild-type and mutants.

Zhang J. J Theor Biol. 2010 May 7;264(1):119-22. doi: 10.1016/j.jtbi.2010.01.024. Epub 2010 Jan 28.

PMID: 20109469

 

Studies on the structural stability of rabbit prion probed by molecular dynamics simulations.

Zhang J. J Biomol Struct Dyn. 2009 Oct;27(2):159-62. doi: 10.1080/07391102.2009.10507305.

PMID: 19583441


In Japanese

イヌプリオンタンパク質野生型とそのD159N変異体の分子動力学研究

Molecular Dynamics Studies of Dog Prion Protein Wild-type and Its D159N Mutant. Zhang Jiapu. Journal of biomolecular structure & dynamics(J. Biomol. Struct. Dyn.)2020Jun04


銀行のボールPRP(168-176)プリオンプロトフィブリルの再訪の極地留め金

The polar clasps of a bank vole PrP(168-176) prion protofibril revisiting. Zhang Jiapu. Journal of molecular modeling(J Mol Model)2019Apr02


野生型ウサギプリオンタンパク質の塩橋Asp177-Arg163(O - N)のレビュー

A review on the salt bridge ASP177-ARG163 (O-N) of wild-type rabbit prion protein. Zhang Jiapu, Wang Feng. Journal of biomolecular structure & dynamics(J Biomol Struct Dyn)2016May01


バッファロープリオンタンパク質の分子動力学研究

Molecular dynamics studies on the buffalo prion protein. Zhang Jiapu, Wang Feng, Chatterjee Subhojyoti. Journal of biomolecular structure & dynamics(J. Biomol. Struct. Dyn.)2016


プリオンタンパク質の(中央)疎水性領域に関する調査と分子動力学研究

A survey and a molecular dynamics study on the (central) hydrophobic region of prion proteins. Zhang Jiapu, Wang Feng. Current pharmaceutical biotechnology(Curr Pharm Biotechnol)2014


ウサギプリオンタンパク質野生型および変異体のNMR構造に関する分子動力学研究:表面静電荷分布。

Molecular dynamics studies on the NMR structures of rabbit prion protein wild type and mutants: surface electrostatic charge distributions. Zhang Jiapu, Wang Feng, Zhang Yuanli. Journal of biomolecular structure & dynamics(J. Biomol. Struct. Dyn.)2015


ウサギプリオンタンパク質のNMRおよびX線構造に関する分子動力学研究

Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins. Zhang Jiapu, Zhang Yuanli. Journal of theoretical biology(J. Theor. Biol.)2014Feb07


疎水性領域PRP(109~136)の3D構造に関する分子動力学研究

Molecular dynamics studies on 3D structures of the hydrophobic region PrP(109-136). Zhang Jiapu, Zhang Yuanli. Acta biochimica et biophysica Sinica(Acta Biochim. Biophys. Sin. (Shanghai))2013Jun01


野生型馬プリオンタンパク質の構造安定性

The structural stability of wild-type horse prion protein. Zhang Jiapu. Journal of biomolecular structure & dynamics(J. Biomol. Struct. Dyn.)2011Oct01


プリオンAGAAAAGAアミロイドフィブリル分子モデリングのための新しい標準的な二重計算アプローチ。

A novel canonical dual computational approach for prion AGAAAAGA amyloid fibril molecular modeling. Zhang Jiapu, Gao David Y, Yearwood John. Journal of theoretical biology(J. Theor. Biol.)2011Sep07


野生型イヌプリオンタンパク質の構造安定性に関する分子動力学研究

Molecular dynamics studies on the structural stability of wild-type dog prion protein. Zhang Jiapu, Liu David D W. Journal of biomolecular structure & dynamics(J. Biomol. Struct. Dyn.)2011Jun01


プリオンAGAAAAGAアミロイドフィブリルの最適な原子分解能構造。

Optimal atomic-resolution structures of prion AGAAAAGA amyloid fibrils. Zhang Jiapu, Sun Jie, Wu Changzhi. Journal of theoretical biology(J. Theor. Biol.)2011Jun21


ウサギプリオンタンパク質とヒトおよびマウスプリオンタンパク質の構造安定性の比較研究。

Comparison studies of the structural stability of rabbit prion protein with human and mouse prion proteins. Zhang Jiapu. Journal of theoretical biology(J. Theor. Biol.)2011Jan21


シミュレーテッドアニーリングによってフォーマットされたプリオンAGAAAAGAアミロイドフィブリルの最適な分子構造。

Optimal molecular structures of prion AGAAAAGA amyloid fibrils formatted by simulated annealing. Zhang Jiapu. Journal of molecular modeling(J Mol Model)2011Jan01


野生型および変異体の分子動力学シミュレーションによって調査されたウサギプリオンの構造安定性に関する研究。

Studies on the structural stability of rabbit prion probed by molecular dynamics simulations of its wild-type and mutants. Zhang Jiapu. Journal of theoretical biology(J. Theor. Biol.)2010May07


分子動力学シミュレーションによって調べられたウサギプリオンの構造安定性に関する研究。

Studies on the structural stability of rabbit prion probed by molecular dynamics simulations. Zhang Jiapu. Journal of biomolecular structure & dynamics(J. Biomol. Struct. Dyn.)2009Oct01


-----------------Literatures: ------------------

  • Zhang JP (2023) My Father's Diaries 1966-1971: A Cherish Literature and History Material - now published (ISBN 978-620-2-41346-6, ISBN-10 6202413468) by the Golden iris, Golden Light Academic Publishing, on 2023-02-08, ii+82 pages. It's English version's ISBN number is 978-620-0-64379-7 by the Globe EDIT Publishing on 2023-03-17, ii+112 pages.

  • Zhang JP (2025) 张家普博士百篇科普论文集(卷一),II+xx+565页, https://youtu.be/qVJv2h8m4f4, ⓒsciencenet . - A recent youtube 关于Hopfield神经网络的一个小注解(张家普)

Molecular structures and structural dynamics of prion proteins and prions : mechanism underlying the resistance to prion diseases

Zhang J., Springer International Publishing, New York, NY, 2015. 355 pp. Type: Book (978-9-401773-17-1). Date Reviewed: Sep 9 2016. Computing Review of ACM - Reviewer:  Anthony J. Duben. Review #: CR144750 (1612-0878).

Unlike bacteria and viruses, which are based on DNA and RNA, prions are unique as disease-causing agents since they are misfolded proteins. Prions propagate by deforming harmless, correctly folded proteins into copies of themselves. The misfolding is irreversible. Prions attack the nervous system of the organism, causing an incurable, fatal deterioration of the brain and nervous system until death occurs. Some examples of these diseases are mad cow disease in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob disease in humans.

Not every species is affected by prion disease. Rabbits, water buffalo, horses, and dogs are resistant to prion diseases. The research question arises: What is different about the protein in a resistant species (especially the rabbit, which seems to be the most resistant) that allows it to retain its folding? This is the research question addressed in this book. The original research reported in this volume is based on molecular modeling since the usual experimental tools for structure elucidation at the molecular level, X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, are often unsuitable for studying proteins. The computational simulation of the interactions within and among proteins is used to interpret the stability of conformations as they fold and as they pack in a cluster of proteins.

After an introductory chapter in which the author describes the proteins in question and a quick overview of molecular dynamics and molecular mechanics, this book is organized into two parts. The first part is a set of nine chapters in which the author presents primarily the results of his research using the molecular dynamics of segments of the proteins of comparable species in order to explain why rabbits resist prion infection while other susceptible species do not. The second part consists of eight chapters emphasizing the optimization methods used in molecular modeling and molecular dynamics.

In the first part, the molecular dynamics simulations are performed at different computational temperatures and at low, high, and neutral pH levels. Segments of the proteins are selected for detailed analysis. The simulations suggest strongly that the prion-resistant species have stronger intra- and inter-chain interactions in specific segments of the protein chain that stabilize their geometries.

The second part discusses the optimization algorithms used: steepest descent, simulated annealing, genetic algorithm, evolutionary optimization, and combinations of these algorithms. The computational goal is identifying the low-energy conformations and their relative stability with respect to each other, especially the differences between the protein and the prion.

There is much that is very good about this book: the reporting of research results comparing different segments of different species’ proteins, the critical reviews of the existing literature, the extensive bibliography (over 700 publications), and the discussion of the optimization techniques. On the other hand, there are shortcomings: the repetitiveness in introducing each chapter by describing the research problem as if it were brand new; the colored figures that are supposed to show changes in conformation are so small that the scales on the axes cannot be read and they are accompanied by figure descriptions that discuss letter codes, not colors; a section discussing important results presented in a figure in a reference, without reprinting the figure in the book; and the poor copy editing that allowed errors in English grammar and scientific descriptions. It seems that the book was created by taking individual papers and assembling them in sequence with little attention to concision and cohesiveness. Nonetheless, if one can endure and overlook the many flaws in presentation, there is a wealth of information and insight in the results presented and in the methods employed. The research is important. The methods used are innovative. Studying this book is worth the effort.

Optimization-based molecular dynamics studies of SARS-CoV-2 molecular structures: research on COVID- 19 

Zhang J., Springer International Publishing,Cham, Switzerland,2023. 953 pp.Type:Book. Date Reviewed: 05/26/25. Computing Review of ACM - Reviewer:  Anthony J. Duben. Review #: CR147951.

The urgent need to develop COVID-19 vaccines, medications, and treatments led to an unprecedented level of activity in research labs. Computational chemistry was an integral part of the research efforts because it could reveal details of the interactions between components of the COVID-19 virus, receptor sites on the cell being attacked, and potential drugs. The principal computational technique used was molecular dynamics (MD), which can reveal changes in the 3D molecular structures in both the attacking and attacked molecules as they interact.

This 900-plus-page book is a compilation of the results of computations performed using components of the COVID-19 virus (including the spike proteins--both with and without glycosylation, membrane glycoproteins, envelope glycoproteins, and their variants in the principal mutations), human proteins and the ACE2 enzyme (the target of COVID-19), the related coronaviruses SARS and MERS, human immunodeficiency virus (HIV) inhibitors, scores of potential drugs, and vaccine components. This list is not exhaustive.

The book is presented in 28 chapters, plus a short appendix on MD optimization algorithms, references, and an index. The chapters follow a similar format. Each chapter begins with a brief introduction in which the central substances are presented, followed by another short section on the materials (for example, the specific portions of the interacting molecules) and the methods (the scope of the MD calculations, such as the software package used, force field parameter sets, solvent composition, and time period covered in the calculation). The bulk of the chapter is the results and discussion section, which contains many lengthy tables of likely close contacts between components of each interacting substance (for example, amino acids in each of the two proteins). Since the amino acids are numbered in the standard structural databases, it is possible to work backwards to reveal the structural environments of these contacts. This section also includes some graphics displaying the progress of the MD calculations and some molecular diagrams. Unfortunately, these graphics have been too reduced in size to easily perceive what they are supposed to illustrate. There is a short conclusion. Several of these chapters are followed by a lengthy supplemental section with many more tables of data results selected from the MD trajectories plus additional small graphics. The number and length of the tables is overwhelming.

There is little critical discussion of the MD calculations themselves or their optimization. However, data taken from the literature and archives is analyzed and could be used comparatively by other researchers investigating these COVID-19 systems. The structure of the book and data presented restrict the book’s primary use as a reference resource.


Introduction to the Computing Reviews of ACM:

https://en.wikipedia.org/wiki/ACM_Computing_Reviews

ACM Computing Reviews (CR) is a scientific journal that reviews literature in the field of computer science. It is published by the Association for Computing Machinery and the editor-in-chief is Carol Hutchins (New York University).[1]

See also

  • ACM Guide to Computing Literature

  • ACM Computing Surveys

  • Algorithms

References

1 "Computing Reviews, the leading online review service for computing literature". computingreviews.com. Retrieved 2023-02-05.


The following is from 中国海洋大学:

荐读提要:Optimization-based Molecular Dynamics Studies of SARS-CoV-2 Molecular Structures - Research on COVID- 19 / by Jiapu Zhang. 1st ed. 2023.

核心主题
本书的核心主题是通过优化分子动力学(MD)研究SARS-CoV-2的分子结构,结合生物物理学、生物学和生物信息学的方法,深入探讨COVID-19相关蛋白质和RNA的结构与功能。

内容详情
本书详细介绍了SARS-CoV-2的多种蛋白质和RNA结构,包括Papain-Like半胱氨酸蛋白酶(PLpro)、3C-Like蛋白酶(3CLpro)、RNA依赖性RNA聚合酶(RdRp)、RNA解旋酶、Spike糖蛋白等。书中还探讨了这些蛋白质与药物的结合、疫苗开发、病毒起源以及流行病学数学模型。

主题分析
本书的主题涵盖了分子动力学优化、结构生物信息学、药物与疫苗开发、病毒起源与传播模型等多个方面。通过优化分子动力学轨迹,提取关键的结构生物信息,为理解SARS-CoV-2的分子机制提供了重要依据。

图书摘要
本书通过优化分子动力学研究,提取了SARS-CoV-2蛋白质和RNA的关键结构信息。书中详细介绍了优化方法、分子稳定性分析、药物与疫苗开发、以及流行病学数学模型。适合从事计算生物化学、计算生物物理学、结构生物信息学等领域的研究人员和学生。

学术定位
本书在学术上定位为计算生物化学、计算生物物理学和结构生物信息学领域的研究专著,适合从事相关领域研究的学者和研究生阅读。

时效性与视角
本书于2023年出版,内容紧跟COVID-19研究的最新进展,特别是分子动力学优化和结构生物信息学方面的研究。视角聚焦于分子层面的机制分析,具有较强的时效性和学术价值。

适用读者
本书适用于从事计算生物化学、计算生物物理学、分子动力学、结构生物信息学等领域的研究人员、教师和学生。同时,对COVID-19研究感兴趣的读者也能从中获得有价值的信息。

阅读推荐
推荐给从事分子动力学、结构生物信息学、药物开发等领域的研究人员和学生。本书不仅提供了详细的研究方法,还结合了最新的COVID-19研究成果,具有较高的学术参考价值。

数据总结
本书通过优化分子动力学研究,深入探讨了SARS-CoV-2的分子结构与功能,涵盖了蛋白质与RNA的结构分析、药物与疫苗开发、以及流行病学数学模型。适合从事计算生物化学、计算生物物理学和结构生物信息学领域的研究人员和学生阅读。

 

荐读提要:Molecular Dynamics Analyses of Prion Protein Structures - The Resistance to Prion Diseases Down Under / by Jiapu Zhang. 1st ed. 2018.

核心主题
本书的核心主题是通过分子动力学(MD)模拟分析朊病毒蛋白(PrP)的结构,探讨不同物种对朊病毒疾病的抗性机制。

内容详情
本书分为五个部分:

  1. 朊病毒抗性物种:包括兔子、狗、马、水牛、猪、鸡、乌龟和青蛙等物种的PrP结构分析。

  2. β2-α2环结构:研究野生型小鼠及其突变体的PrP结构,以及其他物种的有序β2-α2环结构。

  3. 人类突变体:分析人类PrP突变体及其与朊病毒疾病(如克雅氏病、格斯特曼-斯特劳斯勒-谢因克综合征、致命性家族性失眠症等)的关联。

  4. PrP结合与对接:研究PrP与抗体、纳米抗体、RNA适配体等的结合,以及潜在的抗朊病毒药物。

  5. 具有交叉β结构的PrP肽:通过数学公式和氢键分析,研究PrP肽的交叉β结构。

主题分析
本书通过分子动力学模拟,深入探讨了朊病毒蛋白的结构与功能,特别是不同物种对朊病毒疾病的抗性机制。书中还涉及了朊病毒疾病的分子基础、PrP突变体的结构变化以及潜在的抗朊病毒药物。

图书摘要
本书是首部全面应用分子动力学模拟分析朊病毒蛋白结构的专著,涵盖了几乎所有已知的PrP PDB条目。书中详细研究了抗性物种(如猪、鸡、乌龟、青蛙等)的PrP结构,并与高易感物种进行了对比。此外,书中还深入分析了小鼠和人类PrP突变体的结构变化,以及PrP与抗体、化合物的结合机制。最后,书中还探讨了具有交叉β结构的PrP肽的分子特性。

网络热评

  • 豆瓣:读者认为本书是朊病毒研究领域的重要参考书,尤其适合从事计算生物学和生物信息学的研究人员。

  • 知乎:有用户指出,本书的分子动力学模拟方法为朊病毒疾病的研究提供了新的视角,具有较高的学术价值。

  • 小红书:部分读者表示,本书内容较为专业,适合有一定生物学背景的读者阅读。

学术定位
本书在学术上定位为计算生物学、生物信息学和分子动力学领域的专业参考书,适合从事相关研究的学者和研究生阅读。

时效性与视角
本书于2018年出版,内容基于最新的分子动力学模拟技术,具有较强的时效性。书中视角独特,从分子层面探讨了朊病毒蛋白的结构与功能。

适用读者
本书适合从事计算物理学、计算生物学、计算化学、生物医学、生物信息学、材料科学、应用数学、理论物理学、信息技术、运筹学和生物统计学等领域的研究人员和学生。

阅读推荐
推荐给对朊病毒疾病、分子动力学模拟和蛋白质结构研究感兴趣的读者。本书不仅适合作为研究参考书,也可作为相关课程的教材使用。

数据总结
本书通过分子动力学模拟,全面分析了朊病毒蛋白的结构与功能,特别是不同物种对朊病毒疾病的抗性机制。书中内容涵盖了抗性物种的PrP结构、人类PrP突变体、PrP与抗体的结合机制以及具有交叉β结构的PrP肽。本书具有较高的学术价值,适合从事相关研究的学者和学生阅读。

 
荐读提要:Molecular Structures and Structural Dynamics of Prion Proteins and Prions - Mechanism Underlying the Resistance of Prion Diseases, 2015istance to Prion Diseases / by Jiapu Zhang. 1st ed. 2015.

核心主题
本书的核心主题是朊病毒蛋白(Prion Proteins)的分子结构和结构动力学,以及朊病毒疾病抗性机制的分子建模与分子动力学模拟研究。

内容详情
本书详细探讨了朊病毒蛋白的分子动力学(MD)模拟和分子建模(MM)构建,重点分析了正常细胞朊病毒蛋白(PrPC)向致病性朊病毒(PrPSc)构象转变的关键因素。书中还研究了低易感性物种(如兔子、狗、马和水牛)的朊病毒蛋白结构,以揭示其抗性机制。此外,书中还涉及了无结构区域PrP(1-120)的分子动力学和分子建模研究。

主题分析
本书的主题围绕朊病毒蛋白的分子结构、动力学及其在朊病毒疾病中的作用展开。通过分子动力学和分子建模技术,作者深入研究了朊病毒蛋白的构象变化及其与疾病的关系,为朊病毒疾病的研究和药物设计提供了重要的理论基础。

图书摘要
本书是首部关于朊病毒蛋白分子动力学模拟和分子建模的易读易懂的专著。通过分子动力学和分子建模技术,作者揭示了朊病毒蛋白从正常构象向致病构象转变的关键机制,并研究了低易感性物种的朊病毒蛋白结构。本书还探讨了无结构区域PrP(1-120)的分子动力学和分子建模,为朊病毒疾病的研究提供了新的视角。

网络热评

  • 豆瓣:读者认为本书是朊病毒研究领域的重要参考书,内容深入且易于理解,适合相关领域的研究人员和学生阅读。

  • 知乎:有用户指出,本书的分子动力学和分子建模技术为朊病毒疾病的研究提供了新的思路,具有较高的学术价值。

  • 小红书:部分读者表示,本书的内容虽然专业,但作者通过清晰的解释和实例使其易于理解,适合对朊病毒研究感兴趣的读者。

学术定位
本书在朊病毒研究领域具有重要的学术地位,特别是在分子动力学和分子建模技术的应用方面。它为朊病毒蛋白的结构研究和疾病机制提供了新的视角,是生物物理学、生物化学、生物医学等领域的重要参考书。

时效性与视角
本书于2015年出版,内容基于当时最新的分子动力学和分子建模技术,具有较高的时效性。作者从分子结构和动力学的角度出发,深入探讨了朊病毒蛋白的构象变化及其与疾病的关系,为朊病毒疾病的研究提供了新的视角。

适用读者
本书适用于生物物理学、生物化学、生物医学、生物信息学、材料科学与工程、应用数学、理论物理、信息技术、运筹学、生物统计学等领域的研究人员和学生。同时,作为这些领域的入门教材,本书也适合对朊病毒研究感兴趣的读者。

阅读推荐
本书是朊病毒研究领域的重要参考书,特别适合从事分子动力学和分子建模研究的研究人员和学生阅读。对于对朊病毒疾病机制感兴趣的读者,本书提供了深入且易于理解的内容,是了解朊病毒蛋白结构和动力学的理想选择。

数据总结
本书《Molecular Structures and Structural Dynamics of Prion Proteins and Prions Mechanism Underlying the Resistance to Prion Diseases》由Jiapu Zhang撰写,2015年首次出版。书中详细探讨了朊病毒蛋白的分子动力学和分子建模,重点分析了朊病毒蛋白的构象变化及其与疾病的关系。本书在朊病毒研究领域具有重要的学术地位,适合相关领域的研究人员和学生阅读。

Google Sites
Report abuse
Google Sites
Report abuse