國立成功大學
藥學系 暨 臨床藥學與藥物科技研究所 (生物藥劑及基因體組)
National Cheng Kung University
School of Pharmacy & Institute of Clinical Pharmacy and Pharmaceutical Sciences
2024/06 成大藥學系10週年系慶 暨 臨藥科技所30週年所慶 /
張惠華實驗室介紹
2021/10 張惠華實驗室介紹
藥物基因體學是精準醫療中的重要領域,運用人類基因體資訊來預測不同個體對治療的反應差異,並找出新的潛在治療標靶。透過研究基因變異如何影響藥物的療效與安全性,藥物基因體學不僅能改善現有治療方式,也能促進新藥的探索與開發。
Pharmacogenomics, an important field in precision medicine, uses human genomic information to predict differences in how individuals respond to treatments and to identify new potential targets for therapy. By studying how genetic variations affect the effectiveness and safety of drugs, pharmacogenomics can help improve existing treatments and also facilitates the discovery and development of new medicines.
藥物基因體學是精準醫學的重要核心,旨在運用人類基因體的遺傳訊息,預測個體對藥物的反應,並鑑別潛在的治療標的。張惠華教授的實驗室致力於精神、神經、與癌症的藥物基因體學研究。
以情緒疾患(如憂鬱症與雙極症)為例,患者在接受藥物治療後仍面臨的認知功能障礙與代謝異常問題。基因體變異會影響患者的治療成效與不良反應,因此本實驗室的核心目標,是建立具有臨床應用潛力的基因體預測模型,以實現個人化治療。我們進行候選基因與全基因體關聯分析(GWAS),鑑別與藥物反應和副作用相關的基因體變異。為彌合基因體發現與臨床治療之間的落差,我們採用整合性的 post-GWAS 分析策略,包括孟德爾隨機化(Mendelian randomization)、多基因風險評分(polygenic risk score, PRS)與藥物基因富集評分(pharmagenic enrichment score, PES),以優先排序可能致病的基因體變異並探究其功能意義。此外,我們發展結合多組學資料的個人化預測模型,整合 PRS、生物標記與環境因子,以提升對治療反應的預測能力。我們也運用全轉錄體關聯研究(TWAS)、特徵匹配與生物機制研究,驗證藥物再利用與新藥開發的潛力。
除情緒疾患外,本實驗室亦拓展研究至癲癇、巴金森氏症、與癌症等疾病的藥物基因體學,探討基因體變異如何影響抗癲癇藥物、巴金森氏症用藥、與抗癌藥物的療效與安全性,進一步支持個人化用藥策略。
Pharmacogenomics constitutes a critical foundation of precision medicine, leveraging human genomic information to predict interindividual variability in drug response and to identify potential therapeutic targets. Professor Hui Hua Chang’s laboratory is dedicated to pharmacogenomic research in psychiatry, neurology, and oncology.
In mood disorders such as major depressive disorder and bipolar disorder, patients often continue to experience cognitive impairments and metabolic abnormalities despite pharmacological treatment. Genetic variation plays a pivotal role in modulating therapeutic efficacy and adverse drug reactions. Consequently, the central objective of our laboratory is to establish clinically translatable genomic prediction models to advance personalized therapeutics. We conduct candidate gene studies and genome-wide association studies (GWAS) to identify genetic variants associated with drug response and treatment-related side effects. To facilitate the translation of genomic findings into clinical practice, we employ integrative post-GWAS analytical strategies, including Mendelian randomization, polygenic risk scoring (PRS), and pharmagenic enrichment scoring (PES), in order to prioritize putative causal variants and elucidate their biological significance. Furthermore, we are developing personalized predictive frameworks that incorporate multi-omics data—integrating PRS, biomarkers, and environmental factors—to enhance the predictive accuracy of treatment outcomes. We also utilize transcriptome-wide association studies (TWAS), feature-matching approaches, and mechanistic investigations to assess the potential for drug repurposing and novel drug discovery.
In addition to mood disorders, our research extends to epilepsy, Parkinson’s disease, and cancer, where we examine the impact of pharmacogenomics on the effectiveness and safety of antiepileptic, antiparkinsonian, and anticancer agents. Collectively, these efforts aim to support the implementation of precision medicine through optimized, individualized pharmacotherapy.