Best to read Little Omega
Power diamond!
b(n) = n↑nn↑nn↑nn…(n ↑ns)…↑nn
b1(n) = b(n) ↑b(n)b(n) ↑b(n)…(b(n) “↑b(n)”s)…b(n)
.
.
.
bω(n) = bn(n) ↑b^n(n) bn(n) ↑b^n(n) bn(n) ↑b^n(n)…(bn(n) “↑b^n(n)”s)…bn(n)
π1(n) = bω(bω(bω(bω(bω(bω(…(n “bω(“s)…bω(n)
π2(n) = π1(π1(π1(π1(π1(π1(π1(… (π1(n) “π1(“s) π1(n)
.
.
.
πω(n) = πn(πn(πn(… (πn(n) “πn(“s ) πn(n)
.
.
.
πε0(n) = πω+n^n(πω+n^n(πω+n^n(…(πω+n^n(n) “πω+n^n(“s)…πω+n^n(n)
M(n,o) = πε0(ω(n,o,n,o,n)) = n◊o
n◊o◊p = M(M(…(p “M(“s)…M(n,o),M(n,o)…) (we’ll call this A for simplicity)
2◊2◊2 = M(M(2,2),M(2,2)) (we’ll call this B for simplicity)
n◊o◊p◊q = M(…(q “M(“s)…M(a,a),M(a,a)…)
2◊2◊2◊2 = M(M(B,B),M(B,B))
And so on with the recursion.
Note: if you want to write n◊n◊n…(x ◊s)…◊n , it can be simplified as n◊xn.