Wow
Funcion α(n,m)
α(m,n) = α(m^(m)m, n^(n),m^(m), n^(n),m)
α(m,n,0,0,0) = mn
α(m,n,0,1,0) = mn * mn * mn …… mn times
α(m,n,1,0,0) = α(m,n,0,1,0) α(m,n,0,1)^α(m,n,0,1)…α(m,n,0,1) times
α(m,n,1,1,0) = α(m,n,1,0,0)*α(m,n,1,0)*α(m,n,1,0,0)...α(m,n,1,0) times.
α(m,n,1,2,0) = α(m,n,1,1,0)↑3α(m,n,1,1)
...
α(m,n,o,p,q) = α(α(α(α(m,n,o -1,p - 1)↑p+1α(m,n,o-1,p -1))))... total q+ times of α(xxx).
Note: if α(n,m) is written merely as α(n), then m will be the same as m.
α(n,m) will convert itself to α(mm^m...m times^m, nn^n...n times^n,mm^m...m times^m, nn^n...n times^n, mm^m...m times^m), and α(n) will convert itself to α(nn^n...n times^n,nn^n...n times^n, nn^n...n times^n, nn^n...n times^n, nn^n...n times^n)
In α(m,n,o,p,q), m,n are the numbers that will be enlarged, while o denotes the number that will be operated, and p tells whether the up arrow notation should enlarge the operation; finally, q means the recursive of α(n) or α(m,n).
Function β(n)
<Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(nn^n^n...n times*32^95^95^95 ) <== Large bracket closes all previous brackets. >
(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(nn^n^n...n times*32^95^95^95 ))
|Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(α(nn^n^n...n times*32^95^95^95 )|
This function is a sizeable recursive sequence of the busy beaver function, fast-growing hierarchy, and the α(n) function from earlier
Function γ(n)
β(β(β(β(β(β(β(β(β(β(β(β(β(β(β(β(β(β(β(β(β(β(β(β(β(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(
Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(ƒΓ0(n↑n↑nn*
2.9908195^95^95^95)
An even faster-growing, more considerable function to encapsulate β(n). (With some from the boom def.)
Function ω(n,n1,n2,n3,n4) (aka little omega)
ω(n) = RayoRayo(Rayo(10^10^100 * n))( Rayo(Rayo(10^10^100 x n)))
ω(n,n1) = α(((ω(n)↑ω(n)ω(n)) ↑a) ↑b) ↑C)…….. repeat process n1 times. )
142443
A
142444443
B
14442444443
C
.
.
.
(A LOT of recursive. Oh also α(n) to top it off.)
ω(n,n1,n2) = TreeTree(Ω(n,n1))(ω(n,n1))
ω(n,n1,n2,n3) = SCGSCG(Ω(n,n1,n2))(ω(n,n1,n2))
ω(n,n1,n2,n3,n4) = γ(γ(γ(γ(γ(Nucl(SSCG(ω(n,n1,n2,n3))))
The omega function is a function that requires calculating the previous functions. So, ω(1,2,3,4,5) requires calculating ω(1,2,3,4) then ω(1,2,3) then ω(1,2) and finally ω(1).