List of Publications: see my articles in inSPIRE / ADS / arXiv / Google Scholar

[47] R. Crocker, O. Macias, D. Mackey, M. Krunholz, S. Ando, S. Horiuchi, et al. "Gamma ray emission from the Sagittarius dwarf spheroidal galaxy due to millisecond pulsars", Nature Astronomy (2022) [doi:https://www.nature.com/articles/s41550-022-01777-x]

[46] F. Zimmer, O. Macias, S. Ando, R. M. Crocker, S. Horiuchi, "The Andromeda Gamma-Ray Excess: Background Systematics of the Millisecond Pulsars and Dark Matter Interpretations", [arXiv:2204.00636]

[45] M. Pohl, O. Macias, P. Coleman, C. Gordon, "Assessing the Impact of Hydrogen Absorption on the Characteristics of the Galactic Center Excess", [doi: https://doi.org/10.3847/1538-4357/ac6032]

[44] Leane et. al. "Snowmass2021 Cosmic Frontier White Paper: Puzzling Excesses in Dark Matter Searches and How to Resolve Them". [arXiv:2203.06859]

[43] Ando et. al. "Snowmass2021 Cosmic Frontier: Synergies between dark matter searches and multiwavelength/multimessenger astrophysics", [arXiv:2203.06781]

[42] D. Hashimoto, A. J. Nishizawa, M. Takada and O. Macias, "Dark matter constraint with gamma-ray galaxies cross correlation scales with N," [arXiv:2109.08832].

[41] T. Siegert, R. M. Crocker, O. Macias, F. H. Panther, F. Calore, D. Song and S. Horiuchi, "Measuring the smearing of the Galactic 511 keV signal: positron propagation or supernova kicks?," MNRAS Lett. 509,1, (2021) doi:https://doi.org/10.1093/mnrasl/slab113 [arXiv:2109.03691].

[40] Macias, O., van Leijen, H., Song, D., Ando, S., Horiuchi, S., and Crocker, R. M., “Cherenkov Telescope Array sensitivity to the putative millisecond pulsar population responsible for the Galactic Centre excess”, Mon. Not. Roy. Astron. Soc, vol. 506, no. 2, pp. 1741–1760, 2021. doi: https://doi.org/10.1093/mnras/stab1450.

[39] Gautam A., Crocker R., Ferrario L., Ruiter A., Ploeg H., Gordon C., Macias O. “Millisecond Pulsars from Accretion Induced Collapse naturally explain the Galactic Center Gamma-ray Excess”, [https://www.nature.com/articles/s41550-022-01658-3], 2021.

[38] Song, D., Macias, O., Horiuchi, S., Crocker, R. M., and Nataf, D. M., “Evidence for inverse Compton emission from globular clusters”, Mon. Not. Roy. Astron. Soc. 507, no.4, 5161-5176 (2021) doi:10.1093/mnras/stab2406 [arXiv:2102.0006], 2021.

[37] Rinchiuso, L., Macias, O., Moulin, E., Rodd, N. L., and Slatyer, T. R., “Prospects for detecting heavy WIMP dark matter with the Cherenkov Telescope Array: The Wino and Higgsino”, [Physical Review D], vol. 103, no. 2, 2021. doi: https://doi.org/10.1103/PhysRevD.103.023011.

[36] Ploeg, H., Gordon, C., Crocker, R., and Macias, O., “Comparing the galactic bulge and galactic disk millisecond pulsars”, [Journal of Cosmology and Astroparticle Physics], vol. 2020, no. 12, 2020. doi: https://doi.org/10.1088/1475-7516/2020/12/035.

[35] Foster J., Kahn Y., Macias O., Sun Z., Eatough R., Kondratiev V., Peters W., Weniger C., Safdi B. “Green Bank and Effelsberg Radio Telescope Searches for Axion Dark Matter Conversion in Neutron Star Magnetospheres”, [Physical Review Letters], vol. 125, no. 17, 2020. doi: https://doi.org/10.1103/PhysRevLett.125.171301.

[34] Abazajian, K. N., Horiuchi, S., Kaplinghat, M., Keeley, R. E., and Macias, O., “Strong constraints on thermal relic dark matter from Fermi-LAT observations of the Galactic Center”, [Physical Review D], vol. 102, no. 4, 2020. doi: https://doi.org/10.1103/PhysRevD.102.043012.

[33] Buschmann, M., “Foreground mismodeling and the point source explanation of the Fermi Galactic Center excess”, [Physical Review D], vol. 102, no. 2, 2020. doi: https://doi.org/10.1103/PhysRevD.102.023023.

[32] Coleman, B., Paterson, D., Gordon, C., Macias, O., and Ploeg, H., “Maximum entropy estimation of the Galactic bulge morphology via the VVV Red Clump”, [Monthly Notices of the Royal Astronomical Society], vol. 495, no. 3, pp. 3350–3372, 2020. doi: https://doi.org/10.1093/mnras/staa1281.

[31] Shirasaki, M., Macias, O., Ando, S., Horiuchi, S., and Yoshida, N., “Cross-correlation of the extragalactic gamma-ray background with the thermal Sunyaev-Zel'dovich effect in the cosmic microwave background”, [Physical Review D], vol. 101, no. 10, 2020. doi: https://doi.org/10.1103/PhysRevD.101.103022.

[30] Hashimoto, D., “Constraining dark matter annihilation with HSC low surface brightness galaxies”, [Journal of Cosmology and Astroparticle Physics], vol. 2020, no. 1, 2020. doi: https://doi.org/10.1088/1475-7516/2020/01/059.

[29] Ishiwata, K., Macias, O., Ando, S., and Arimoto, M., “Probing heavy dark matter decays with multi-messenger astrophysical data”, [Journal of Cosmology and Astroparticle Physics], vol. 2020, no. 1, 2020. doi: https://doi.org/10.1088/1475-7516/2020/01/003.

[28] Ando, S., “Discovery prospects of dwarf spheroidal galaxies for indirect dark matter searches”, [Journal of Cosmology and Astroparticle Physics], vol. 2019, no. 10, 2019. doi: https://doi.org/10.1088/1475-7516/2019/10/040.

[27] Macias, O., Horiuchi, S., Kaplinghat, M., Gordon, C., Crocker, R. M., and Nataf, D. M., “Strong evidence that the galactic bulge is shining in gamma rays”, [Journal of Cosmology and Astroparticle Physics], vol. 2019, no. 9, 2019. doi: https://doi.org/10.1088/1475-7516/2019/09/042.

[26] Song, D., Macias, O., and Horiuchi, S., “Inverse Compton emission from millisecond pulsars in the Galactic bulge”, [Physical Review D], vol. 99, no. 12, 2019. doi: https://doi.org/10.1103/PhysRevD.99.123020.

[24] Hashimoto, D., “Measurement of redshift-dependent cross-correlation of HSC clusters and Fermi γ-rays”, [Monthly Notices of the Royal Astronomical Society], vol. 484, no. 4, pp. 5256–5266, 2019. doi: https://doi.org/10.1093/mnras/stz321.

[23] Shirasaki, M., Macias, O., Horiuchi, S., Yoshida, N., Lee, C.-H., and Nishizawa, A. J., “Correlation of extragalactic γ rays with cosmic matter density distributions from weak gravitational lensing”, [Physical Review D], vol. 97, no. 12, 2018. doi: https://doi.org/10.1103/PhysRevD.97.123015.

[22] Macias, O., “Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess”, [Nature Astronomy], vol. 2, pp. 387–392, 2018. doi: https://doi.org/10.1038/s41550-018-0414-3.

[21] Ploeg, H., Gordon, C., Crocker, R., and Macias, O., “Consistency between the luminosity function of resolved millisecond pulsars and the galactic center excess”, [Journal of Cosmology and Astroparticle Physics], vol. 2017, no. 8, 2017. doi: https://doi.org/10.1088/1475-7516/2017/08/015.

[20] Shirasaki, M., Macias, O., Horiuchi, S., Shirai, S., and Yoshida, N., “Cosmological constraints on dark matter annihilation and decay: Cross-correlation analysis of the extragalactic γ -ray background and cosmic shear”, [Physical Review D], vol. 94, no. 6, 2016. doi: https://doi.org/10.1103/PhysRevD.94.063522.

[19] Lacroix, T., Macias, O., Gordon, C., Panci, P., BÅ`hm, C., and Silk, J., “Spatial morphology of the secondary emission in the Galactic Center gamma-ray excess”, [Physical Review D], vol. 93, no. 10, 2016. doi: https://doi.org/10.1103/PhysRevD.93.103004.

[18] Horiuchi, S., Macias, O., Restrepo, D., Rivera, A., Zapata, O., and Silverwood, H., “The Fermi-LAT gamma-ray excess at the Galactic Center in the singlet-doublet fermion dark matter model”, [Journal of Cosmology and Astroparticle Physics], vol. 2016, no. 3, 2016. doi: https://doi.org/10.1088/1475-7516/2016/03/048.

[17] Macias, O., Gordon, C., Crocker, R. M., and Profumo, S., “Cosmic ray models of the ridge-like excess of gamma rays in the Galactic Centre”, [Monthly Notices of the Royal Astronomical Society], vol. 451, no. 2, pp. 1833–1847, 2015. doi: https://doi.org/10.1093/mnras/stv1002.

[16] Aartsen, M. G., “Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo”, [European Physical Journal C], vol. 75, 2015. doi: https://doi.org/10.1140/epjc/s10052-014-3224-5.

[15] Aartsen, M. G., “Searches for Extended and Point-like Neutrino Sources with Four Years of IceCube Data”, [The Astrophysical Journal], vol. 796, no. 2, 2014. doi: https://doi.org/10.1088/0004-637X/796/2/109.

[14] Aartsen, M. G., “Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube”, [Physical Review D], vol. 90, no. 10, 2014. doi: https://doi.org/10.1103/PhysRevD.90.102002.

[13] Aartsen, M. G., “Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data”, [Physical Review Letters], vol. 113, no. 10, 2014. doi: https://doi.org/10.1103/PhysRevLett.113.101101.

[12] Aartsen, M. G., “Search for non-relativistic magnetic monopoles with IceCube”, [European Physical Journal C], vol. 74, 2014. doi: https://doi.org/10.1140/epjc/s10052-014-2938-8.

[11] Aartsen, M. G., “Search for neutrino-induced particle showers with IceCube-40”, [Physical Review D], vol. 89, no. 10, 2014. doi: https://doi.org/10.1103/PhysRevD.89.102001.

[10] Gordon, C. and Macias, O., “Dark matter and pulsar model constraints from Galactic center Fermi/LAT γ-ray observations”, in [The Galactic Center: Feeding and Feedback in a Normal Galactic Nucleus], 2014, vol. 303, pp. 414–418. doi: https://doi.org/10.1017/S1743921314001033.

[9] Macias, O. and Gordon, C., “Contribution of cosmic rays interacting with molecular clouds to the Galactic Center gamma-ray excess”, [Physical Review D], vol. 89, no. 6, 2014. doi: https://doi.org/10.1103/PhysRevD.89.063515.

[8] Aartsen, M. G., “Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration”, [Physical Review D], vol. 89, no. 6, 2014. doi: https://doi.org/10.1103/PhysRevD.89.062007.

[7] Aartsen, M. G., “Energy reconstruction methods in the IceCube neutrino telescope”, [Journal of Instrumentation], vol. 9, no. 3, 2014. doi: https://doi.org/10.1088/1748-0221/9/03/P03009.

[6] Gordon, C. and Macías, O., “Erratum: Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations [Phys. Rev. D 88, 083521 (2013)]”, [Physical Review D], vol. 89, no. 4, 2014. doi: https://doi.org/10.1103/PhysRevD.89.049901.

[5] Aartsen, M. G., “Improvement in fast particle track reconstruction with robust statistics”, [Nuclear Instruments and Methods in Physics Research A], vol. 736, pp. 143–149, 2014. doi: https://doi.org/10.1016/j.nima.2013.10.074.

[4] Aartsen, M. G., “IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters”, [Physical Review D], vol. 88, no. 12, 2013. doi: https://doi.org/10.1103/PhysRevD.88.122001.

[3] Aartsen, M. G., “Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory”, [Physical Review D], vol. 88, no. 11, 2013. doi: https://doi.org/10.1103/PhysRevD.88.112008.

[2] Aartsen, M. G., “Search for Time-independent Neutrino Emission from Astrophysical Sources with 3 yr of IceCube Data”, [The Astrophysical Journal], vol. 779, no. 2, 2013. doi: https://doi.org/10.1088/0004-637X/779/2/132.

[1] Gordon, C. and Macías, O., “Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations”, [Physical Review D], vol. 88, no. 8, 2013. doi: https://doi.org/10.1103/PhysRevD.88.083521.