2025
Light responsive single amino acid-based supramolecular hydrogel for photo-controlled vitamin release. D. Chauhan and Chandan Maity*, Mater. Adv., accepted.
Catalytically controlled formation of coumarin-based hydrogelator enables colorimetric ferrous ion detection in sol and hydrogel. N. Das, S. Mandal, S. S. Mal, S. Bose and Chandan Maity*, Commun. Chem., accepted.
Room-temperature synthesis of silver-based nanoparticle-embedded hydrogel material via catalytic crosslinking for recyclable dye degradation applications. D. Jagankar, N. Das, A. Mukherjee and Chandan Maity*, RSC Adv., 2025, 15, 34068-34078. (doi.org/10.1039/D5RA03595C)
Self-assembly-driven esterase mimetic behavior of a naphthalenediimide amphiphile in aqueous media. R. Gharad and Chandan Maity*, ChemCatChem., 2025, 0, e00882. (https://doi.org/10.1002/cctc.202500882)
Self-assembly of tyrosine scaffolds in aqueous media: complex molecular architectures from simple building blocks. D. Bharathidasan and Chandan Maity*, Chem. Rec. 2025, 25, e202500005. (https://doi.org/10.1002/tcr.202500005)
Selected as "Cover Art"
Catalytic synthesis of xanthene and unprecedented evolution of naphthopyrans using heteropoly acid‐Tantalum (V) oxide hybrid composite as promoter. J. Mahapatra, S. Ghosh Dastidar, D. Jagankar, N. Roy, J. Sharma, A. Mukherjee, Chandan Maity, T. K. Panda*, S. S. Mal*, Chem. Select., 2025, 10, e202406059. (doi.org/10.1002/slct.202406059)
In-situ and ex-situ EPS-corona formation on ZnO QDs mitigates their environmental toxicity in the freshwater microalgae Chlorella sp.. A. Debroy, A. K. Sinha, Chandan Maity, M. Pulimi, W. J. G. M. Peijnenburg, A. Mukherjee*, Journal of Hazardous Materials., 2025, 486 , 137034 . (https://doi.org/10.1016/j.jhazmat.2024.137034 )
Organelle-specific smart supramolecular materials for bioimaging and theranostics application. D. Bharathidasan and Chandan Maity*, Top. Curr. Chem., 2025, 383, 1. (https://doi.org/10.1007/s41061-024-00483-8)
2024
Biochemical signal-induced supramolecular hydrogelation for structured free-standing soft material formation. D. Bharathidasan, A. S. Salvi, S. Bose and Chandan Maity*, Macromol. Biosci., 2024, 24, 2400419 . (https://doi.org/10.1002/mabi.202400419)
Selected as "Cover Art"
Mechanical force- switchable aqueous organocatalysis. N. Das and Chandan Maity*, Commun. Mater., 2024, 5, 205. (doi.org/10.1038/s43246-024-00640-y)
Multi-colored aqueous ink for rewritable paper. N. Das and Chandan Maity*, Small, 2024, 20, 2403512. (https://doi.org/10.1002/smll.202403512)
Selected as "Frontispiece"
2023
Chemical transformation in supramolecular hydrogel. N. Das and Chandan Maity*, ACS Catal, 2023, 13, 5544–5570. (https://doi.org/10.1021/acscatal.3c00411)
Switching the mode of drug release from a reaction-coupled low-molecular-weight gelator system by altering its reaction pathway. W. E. M. Noteborn, S. K. Vittala, M. B. Torredemer, Chandan Maity, F. Versluis, R. Eelkema and R. E. Kieltyka*, Biomacromolecules., 2023, 24, 377–386 (https://doi.org/10.1021/acs.biomac.2c01197)
2022
Switchable organocatalytic systems in aqueous media. N. Das and Chandan Maity*, Commun. Chem., 2022, 5, 115. (https://doi.org/10.1038/s42004-022-00734-z)
Alginate-based smart materials and their application: Recent advances and perspectives. Chandan Maity*, N. Das, Top. Curr. Chem., 2022, 380, 3. (https://doi.org/10.1007/s41061-021-00360-8)
2020
Amoxicillin removal from an aqueous solution by adsorption using graphene oxide/calcium alginate biocomposite. A Kaur, Chandan Maity, J. Phys.: Conf. Ser., 2020, 1531, 1, 012109. (https://doi.org/10.1088/1742-6596/1531/1/012109)
2012-2019
Hierarchically compartmentalized supramolecular gels through multilevel self-sorting. Y. Wang, M. Lovrak, Q. Liu, Chandan Maity, V. A. A. le Sage, X. Guo*, R. Eelkema*, J. H. van Esch*, J. Am. Chem. Soc. 2019, 141, 2847-2851. (https://doi.org/10.1021/jacs.8b09596)
Selective activation of organocatalysts by specific signals. Chandan Maity, F. Trausel, R. Eelkema*, Chem. Sci., 2018, 9, 5999-6005. (10.1039/C8SC02019A )
Dissipative assemblies that inhibit their deactivation. B. Rieß, C. Wanzke, M. Tena-Solsona, R. K. Grötsch, Chandan Maity, J. Boekhoven*, Soft Matter, 2018,14, 4852-4859. (https://doi.org/10.1039/C8SM00822A)
Free-standing supramolecular hydrogel objects by reaction-diffusion. M. Lovrak, W. E. J. Hendriksen, Chandan Maity, S. Mytnyk, V. van Steijn, R. Eelkema*, J. H van Esch*, Nat. Commun., 2017, 8, 15317. (https://doi.org/10.1038/ncomms15317)
Crosslinker-induced effects on the gelation pathway of a low molecular weight hydrogel. W. E. M. Noteborn, D. N. H. Zwagerman, V. S. Talens, Chandan Maity, L. van der Mee, J. M. Poolman, S. Mytnyk, J. H. van Esch, A. Kros, R. Eelkema, R. E Kieltyka*, Adv. Mater, 2017, 29, 1603769. (https://doi.org/10.1002/adma.201603769)
Chemical signal activation of an organocatalyst enables control over soft material formation. F. Trausel, Chandan Maity, J. M. Poolman, D. S. J. Kouwenberg, F. Versluis, J. H. van Esch, R. Eelkema*, Nat. Commun., 2017, 8, 879. (https://doi.org/10.1038/s41467-017-00998-3)
Synthesis of a Double-Network Supramolecular Hydrogel by Having One Network Catalyse the Formation of the Second. N. Singh, Chandan Maity, K. Zhang, C. A. Angulo‐Pachón, J. H. van Esch*, R. Eelkema*, B. Escuder*, Chem. Eur. J., 2016, 23, 9, 2018-2021.(https://doi.org/10.1002/chem.201605771)
A toolbox for controlling the properties and functionalisation of hydrazone-based supramolecular hydrogels. J. M. Poolman, Chandan Maity, J. Boekhoven, L. van der Mee, V. A. A. le Sage, G. J. M. Groenewold, S. I. van Kasteren, F. Versluis, J. H. van Esch*, R. Eelkema*, J. Mater. Chem. B, 2016, 4, 852-858. (https://doi.org/10.1039/C5TB01870F)
Negatively charged lipid membranes catalyze supramolecular hydrogel formation. F. Versluis, D. M. van Elsland, S. Mytnyk, D. L. Perrier, F. Trausel, J. M. Poolman, Chandan Maity, V. A. A. le Sage, S. I. van Kasteren, J. H. van Esch*, R. Eelkema*, J. Am. Chem. Soc. 2016, 138, 28, 8670–8673. (https://doi.org/10.1021/jacs.6b03853)
Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments. N. Muthusubramanian, E. Galan, Chandan Maity, R. Eelkema, F. C. Grozema, H. S. J. van der Zant*, Appl. Phys. Lett, 2016, 109, 013102. (https://doi.org/10.1063/1.4955273)
Catalysis of supramolecular hydrogelation. F. Trausel, F. Versluis, Chandan Maity, J. M. Poolman, M. Lovrak, J. H. van Esch*, R. Eelkema*, Acc. Chem. Res., 2016, 49, 7, 1440–1447. (https://doi.org/10.1021/acs.accounts.6b00137)
Novel multiporphyrin functionalized single-walled carbon nanotubes. G. Ö. Ürüt*, D. Karakaş, Chandan Maity, J. Fluoresc., 2015, 25, 529-539. (https://doi.org/10.1007/s10895-015-1522-4)
Spatial structuring of a supramolecular hydrogel by using a visible‐light triggered catalyst. Chandan Maity, W. E Hendriksen, J. H van Esch*, R. Eelkema*., Angew. Chem., Int. Ed., 2015, 54, 998-1001. (https://doi.org/10.1002/anie.201409198)
Catalytic control over supramolecular gel formation. J. Boekhoven, J. M. Poolman, Chandan Maity, F. Li, L. van der Mee, C. B. Minkenberg, E. Mendes, J. H. van Esch*, R. Eelkema*, Nat. Chem. 2013, 5, 433-437. (https://doi.org/10.1038/nchem.1617)
Non-covalent functionalization of individual nanotubes with spiropyran-based molecular switches. A. Setaro, P. Bluemmel, Chandan Maity, S. Hecht*, S. Reich*, Adv. Funct. Mater., 2012, 22, 2425-2431 15317. (https://doi.org/10.1002/adfm.201102451)
Tuning the interaction between carbon nanotubes and dipole switches: the influence of the change of the nanotube–spiropyran distance. P. Blüemmel, A. Setaro, Chandan Maity, S. Hecht*, S. Reich*, J. Phys.: Condens. Matter, 2012, 24, 394005. (https://doi.org/10.1088/0953-8984/24/39/394005)
Designing a spiropyran-based molecular switch for carbon nanotube functionalization: Influence of anchor groups and tube–switch separation. P. Bluemmel, A. Setaro, Chandan Maity, S. Hecht*, S. Reich*, Phys. Status Solidi B, 2012, 249, 12, 2479-2482. (https://doi.org/10.1002/pssb.201200387)
Cover Art
Frontispiece