2025
4. B. Zutter, S. Oh, T. D. Brown, J. Anderson, S. P. Beltran, S. R. Bishop, P. Finnegan, A. Ievlev, Y. Li, J. Sugar, H. E. Lai, B. A. A. Blanco, A. Lopez-
Meza, S. Kumar, E. J. Fuller, R. S. Williams, P. B. Balbuena, A. A. Talin. Mechanisms enabling reconfigurability and long-term retention in vanadium oxide electrochemical memory. Phys. Rev. Mater. 9 (2025). doi: 10.1103/k616-d2q5
This work investigated material mechanisms, particularly coexisting vanadium-oxide phases enabling vanadium oxide to act as a programmable resistor / synapse with long-lasting memory.
3. A. Bradicich, Y. Yu, T. D. Brown, F. Jardali, S. Kumar, R. S. Williams, P. J. Shamberger. Electrically Driven Metal-Insulator Transitions Emerging from Localizing Current Density and Temperature. Adv. Elec. Mater. 11 (2025). doi: 10.1002/aelm.202400975
This study used coupled-physics finite element modeling to tease out the interacting effects of electro-thermal nonlinearities and spontaneous current localizations on steady state negative differential resistance.
2. F. Jardali, J. L. Chong, Y. Yu, S. Kumar, R. S. Williams, P. J. Shamberger, T. D. Brown. Materials Selection Principles for Designing Electro-Thermal Neurons. Adv. Elec. Mater. (2025) doi: 10.1002/aelm.202400938.
This work built off of local activity and nonlinear circuit theory to determine optimal materials for making artificial neurons, ultimately predicting that neurons could be made from CMOS compatible materials like silicon and selenides used in photovoltaics.
1. M. Islam, S. M. Bohaichuk, T. D. Brown, S. Oh, C. Perez, C. Zhang, T. J. Park, M. Park, A. A. Talin, S. Ramanathan, S. Kumar, E. Pop. An electro-optical Mott neuron based on niobium dioxide. Nature Electronics, (2025) doi: 10.1038/s41928-025-01406-1
This investigation uncovered simultaneous electrical and optical self-excitations in niobium oxide artificial neurons.
2024
3. T. D. Brown, A. Zhang, F. Nitta, E. D. Grant, J. Chong, J. Zhu, S. Radhakrishnan, M. Islam, E. J. Fuller, A. A. Talin, P. J. Shamberger, E. Pop, R. S. Williams, S. Kumar. Axon-like active transmission. Nature. 633 (2024) doi: 10.1038/s41586-024-07921-z.
This study demonstrated active transmission (gain >1 requiring DC power) of AC signals in a transmission line composed of locally active lanthanum cobaltite. Essentially the same principle underlying neuronal spikes was found to support axon-like active transmission.
2. K. M.Kim, G. Kim, J. H. In, Y. Lee, H. Rhee, W. Park, H. Sung, J. Park, J. B. Jeon, T. D. Brown, A. A. Talin, S. Kumar, K. Kim. Mott Neurons with Dual Thermal Dynamics for Spatiotemporal Computing. Nature Mater. 23 (2024), doi: 10.1038/s41563-024-01913-0.
This work investigated small networks of thermally coupled niobium oxide artificial neurons, showing that when paired they are capable of more complex group dynamics like entrainment and phase locking.
1. K. S. Woo, A. Zhang, A. Arabelo, T. D. Brown, M. Park, A. A. Talin, E. J. Fuller, R. S. Bisht, X. Qian, R. Arroyave, S. Ramanathan, L. Thomas, R. S. Williams, S. Kumar. True random number generation using the spin crossover in LaCoO3. Nature Comms. 15 (2024). doi: 10.1038/s41467-024-49149-5.
This study used artificial lanthanum cobaltite neurons to produce random binary strings from the inherent thermal noise in the neurons.