本研究採用混波積體電路技術來研發交流感應馬達控制晶片,該晶片包含馬達控制用之數位晶片與類比數位轉換器之類比晶片,藉由兩種不同晶片的整合,減少系統晶片的面積,並提高交流感應馬達控制的精度與穩定度,對提昇馬達控制產業的技術層次與異業結盟頗有助益。目前已經完成的控制技術有:空間向量調變(SVM)控制技術、直接轉矩(DTC)控制技術、比例-積分-微分(PID)控制技術、誤差模糊(Fuzzy)控制技術、倒傳遞類神經(Neural)網路控制技術、類神經PID速度控制技術、預測型直接轉矩(Predictive DTC)控制技術、T-S模糊控制技術等。未來的研究重點在於把類神經PID速度控制器、多階磁滯控制器、類神經預測型直接轉矩控制向量表與T-S模糊控制器等技術整合到直接轉矩控制系統晶片之內,再結合智慧物聯網系統與三角積分類比數位轉換器電路,製造出一顆具有智慧物聯網功能的交流感應馬達控制用混合訊號晶片。上述研究成果已經陸續發表,代表性研究成果如下:
Chong-Cheng Huang, Guo-Ming Sung, Xiong Xiao, Shan-Hao Sung, and Chao-Hung Huang, “Ten-bit 0.909-MHz 8-channel dual-mode successive approximation ADC for a BLDC motor drive”, Electronics, 10, 830, pp. 1-18, October 2021.
Guo-Ming Sung, Ping-Yang Chiang, and Yi-Yu Tsai, “Predictive direct torque control ASIC with fuzzy voltage vector control and neural network PID speed controller”, in Proc. IEEE International Future Energy Electronics Conference (IFEEC 2021), Taipei, Taiwan, 220151, pp. 1-6, November 16-19, 2021.
Guo-Ming Sung, Chun-Ting Lee, and Zhao-Long Chen, “Buck converter IC for brushless DC motor drive using voltage-mode PWM controller,” IET Power Electronics, 5(1), pp. 1-7, May 2020.
Shun-Yuan Wang, Li-Fen Tung, Jen-Hsiang Chou, Wen-Tsai Sung, Guo-Ming Sung, and Ching-Yin Lee, “Design of adaptive function coupling recurrent cerebellar model articulation controller for switched reluctance motor drive systems”, Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC 2019), Bari, Italy, October 6-9, 2019, pp.1658-1663.
Guo-Ming Sung, Yen-Shih Shen, Lelisa T. Keno, and Chih-Ping Yu, “Internet-of-Things-based controller of a three-phase induction motor using a variable-frequency driver”, Proc. IEEE Eurasia Conf. on IOT, Communication and Engineering (IEEE ECICE 2019), Yunlin, Taiwan, T190045, October 3-6, 2019, pp.1-4.
Chih-Ping Yu, Hsin-Kwang Wang, Guo-Ming Sung, and Hong-Yuan Huang, “Modified direct torque control application-specific integrated circuit with five-stage fuzzy hysteresis and a proportional–integral–derivative controller for a three-phase induction motor,” Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC 2018), Miyazaki, Japan, H03, 12252, October 7-10, 2018, pp.2413-2417.
Guo-Ming Sung, Wei-Yu Wang, Wen-Sheng Lin, and Chin-Ping Yu, “Predictive direct torque control application-specific integrated circuit of an induction motor drive with a fuzzy controller,” J. Low Power Electro. Appl., vol. 7, no. 15, pp. 1-16, June 2017
本研究旨在設計並製作一種應用於ISM-915 MHz與2.45 GHz之雙頻段無線射頻能量獵取系統晶片(RF Harvesting Chip),主要是應用在物聯網系統,提高感測器電池的使用年限。該研究的主要電路包含:匹配網路、射頻轉直流電壓整流及倍壓器、過電壓保護電路、低功耗線性穩壓器、充電控制電路等單元。其中,該整流器使用單端驅動式狄克森倍壓電路來將射頻訊號轉為直流電壓並升壓,並且採用具有低臨界電壓之原生型電晶體來減少整流器的能量損失;而倍壓及整流器的輸出端,接上過電壓保護電路,藉以防止射頻訊號在近場時,輸出電壓過高而導致後端電路元件燒毀之情形;最後,使用低功耗低壓降線性穩壓器(LDO)來產生一個穩定的電壓给充電控制電路,對鎳鎘電池穩定充電。模擬結果顯示,在2.45 GHz頻段之整流器(含匹配網路)最大效率為30.3% (2 dBm),獵取系統的最大效率為24.4% (1 dBm)。在915 MHz頻段之整流器(含匹配網路),其最大效率為30.5% (0 dBm),而獵取系統的最高效率約為25.0% (2 dBm)。該獵取系統的工作範圍約為-5 dBm至20 dBm之間,輸出電壓被限制在1.46 V到1.5 V之間,輸出電流約為0.2到0.3 mA,最大輸出功率約為0.3到0.4 mW,晶片面積為0.867 0.967 mm2。相關研究曾獲得ISNE 2018 Best Paper Award,也獲得業界的肯定,目前已經與台灣之星電信公司簽約合作,開發適用於4G與5G電信系統的獵能系統晶片。上述研究成果已經陸續發表,代表性研究成果臚列如下:
Guo-Ming Sung, Hung-Yu Chou, and Zong-Wei Chen, “Radio frequency energy harvesting IC for ISM-915 MHz and 2.45 GHz wireless transmitter”, in Proc. IEEE International Future Energy Electronics Conference (IFEEC 2021), Taipei, Taiwan, 220152, pp. 1-5, November 16-19, 2021.
Guo-Ming Sung, Chao-Kong Chung, Yu-Jen Lai, and Jin-Yu Syu, “Small-area radiofrequency energy harvesting integrated circuits for powering wireless sensor networks,” Sensors, vol. 19, no. 1754, pp. 1-22, 2019.
Guo-Ming Sung, Jhen-You Syu, and Yu-Jen Lai, ”Radio-frequency energy harvesting chip for ISM 915 MHz antenna,” Proc. IEEE 7th Int. Symp. on Next-Generation Electronics (ISNE 2018), Taipei, Taiwan, S01, May 7-9, 2018, pp. 1-3.
Leenendra Chowdary Gunnam, Yu-Jen Lai, and Guo-Ming Sung, “Differential dickson voltage multiplier with matching network for radio frequency harvester”, Proc. IEEE Int. Conf. on Consumer Electronics-Taiwan (ICCE-TW), Taipei, Taiwan, June 12-14, 2017, pp. 419-420.
本研究著重在設計含有ATM/Ethernet橋接器(數位晶片)與類比前端電路(類比晶片)之高速數位用戶迴路(VDSL)混合訊號晶片,重點在於把量測數據(含感測器或馬達控制)網路化,用戶端可以透過網際網路隨時隨地監控馬達或感測器的操作情形,達到遠端控制的功能。目前已經完成的數位網路技術有:USB介面控制技術、雙埠乙太網路介面控制技術、RS485介面封包轉換技術、RGMII(Reduced GMII)介面傳送與接收控制技術、先進先出排序機制(FIFO)、動態差額循環(DRR)排序機制、光纖網路傳送介面技術等。而在類比前端電路的研究方面,已經完成的電路技術有:12位元200 MHz CMOS數位發射器與12位元200 MHz類比接收電路,其中12位元數位發射電路含有12位元200 MHz的數位類比轉換器、濾波器及電流模式全差動線驅動器;而12位元類比接收電路則包括有:12位元切換電流式管線型類比數位轉換器及可調增益放大器等電路。研究重點在於USB與RS485介面控制技術的研發,主要是把RS485與USB導入FIFO排程機制,提高網路傳輸的速度與精確度;接著,擴充到雙埠Ethernet與雙埠RS485的雙向傳輸,提高雙向傳輸速度。上述研究成果已經陸續發表,代表性研究成果臚列如下:
Guo-Ming Sung, Guan-Xiang Tan, Qi-Hong Chen, and Yu-Ting Yang, “12-bit 200 MS/s digital transmitter for very-high-bit-rate digital subscriber loop”, in Proc. 30th Wireless and Optical Communications Conference (WOCC2021), Taipei Tech, Taipei, Taiwan, W-2, pp. 1-5, October 7-8, 2021.
Guo-Ming Sung, Jing-Yan Weng, Ming-Chang Tsai, and Yue-Chi Wang, “12-bit 200 MS/s switched-current pipelined analog-to-digital converter for high-speed DSL”, in Proc. 30th Wireless and Optical Communications Conference (WOCC2021), Taipei Tech, Taipei, Taiwan, W-2, pp. 1-5, October 7-8, 2021.
Guo-Ming Sung, Li-Fen Tung, Hsin-Kwang Wang, and Jhih-Hao Lin, “ USB transceiver with a serial interface engine and FIFO queue for efficient FPGA-to-FPGA communication, IEEE Access, 1 (2), pp. 1-22, April 2020.
Guo-Ming Sung, Yen-Shih Shen, Chih-Ping Yu, and Zhi-Lun You, “A two-port–two-port serial interface between RS485 and Ethernet with FIFO queue for efficient PC-to-PC communication,” IET Networks, NET-2019-0135, pp. 1-12, 2019.
Hsin-Kwang Wang, Chih-Ping Yu, Guo-Ming Sung, and Ming-Wei Li, “Intelligent packet transformation and transmission between Ethernet and optical fiber systems based on a field-programmable gate array board,” Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC 2018), Miyazaki, Japan, TuP-31, 12253, October 7-10, 2018, pp. 4071-4076.
Guo-Ming Sung, Hsin-Kwang Wang, and Zi-Yu Li, “Hardware design on FPGA for Ethernet/SONET bridge in smart sensor system,” Proc. IEEE 7th Int. Symp. on Next-Generation Electronics (ISNE 2018), Taipei, Taiwan, S09, May 7-9, 2018, pp. 1-4.
Guo-Ming Sung, Hsin-Kwang Wang, and Jhih-Hao Lin, “Serial interface engine ASIC with USB physical transceiver based on FPGA development board”, Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC), Banff, Canada, 0201, October 5-8, 2017, pp. 410-413.
Te-Chang Lee, Jonathan Hsia, and Guo-Ming Sung, “12-bit 250-MHz digital transmitter with DAC and line driver”, Proc. IEEE Int. Conf. on Consumer Electronics-Taiwan (ICCE-TW), Taipei, Taiwan, June 12-14, 2017, pp. 17-18.
本研究著重在本實驗室所提出的切換電流式取樣技術的應用,其主要是應用於管線型類比數位轉換器(Pipelined ADC)、連續漸進式類比數位轉換器(SAR ADC)與三角積分類比數位轉換器(-ADC)。切換電流式管線型類比數位轉換器主要是應用在超高速數位用戶迴路(VDSL)架構中,其取樣頻率可達到每秒200 MHz、解析度10位元,整個類比數位轉換器架構共計九級,前面八級為1.5位元的架構,最後一級為2位元架構;此外,利用數位校正電路來校正比較器所造成的誤差,同時利用主動回授式電流鏡來降低輸入阻抗與改善通道長度調變效應,以及使用虛開關來減少通道電荷注入和時脈潰入的誤差,藉此得到信號匹配的精確度及改善傳遞誤差。連續漸進式類比數位轉換器主要用於多通道訊號處理與直流無刷馬達(BLDC)控制,已經完成的技術是具有8個開關與二個操作模式的10位元切換電容式連續漸進式類比數位轉換器、具有鎖相迴路功能的10位元切換電容式連續漸進式類比數位轉換器與應用於直流無刷馬達的10位元切換電容式連續漸進式類比數位轉換器。三角積分類比數位轉換器研究方面,主要是三角積分調變器的設計,目前完成的調變器架構有:二階、三階(2+1)、四階(2+2)與三階多位元等多級三角積分調變器,再配合資料平均權重技術(IDWA)、數位雜訊消除電路與降頻電路,可以有效地降低雜訊,提高電路解析度。本年度(2020)的研究著重在2+1階與2+2階多級雜訊摒除技術在三角積分調變器的應用,特別是設計出新型的切換電流式取樣保持電路與新型的數位雜訊消除電路(DNCC)。其中,切換電流式管線型類比數位轉換器已經與益力半導體股份有限公司簽約合作;而三角積分類比數位轉換器則與香港商睿克科技有限公司台灣分公司簽約合作,相關研究成果已經陸續發表,代表性研究成果臚列如下:
Guo-Ming Sung, Jing-Yan Weng, Ming-Chang Tsai, and Yue-Chi Wang, “12-bit 200 MS/s switched-current pipelined analog-to-digital converter for high-speed DSL”, in Proc. 30th Wireless and Optical Communications Conference (WOCC2021), Taipei Tech, Taipei, Taiwan, W-2, pp. 1-5, October 7-8, 2021.
Guo-Ming Sung, Po-En Wu, and Jun-Min Xu, “10-bit successive approximation register analog-to-digital converter for BLDC motor drive”, Proc. Int. Symp. on Computer, Consumer and Control, Taichung, Taiwan, 1240, November 13-16, 2020, pp. 1-4.
Guo-Ming Sung, Chun-Ting Lee, Xiong Xiao, and Leenendras-Chowdary Gunnam, “4th-order switched-current multistage-noise-shaping delta-sigma modulator with a simplified digital noise-cancellation circuit,” IEEE Access, 8, pp. 168589-168600, Sep. 2020.
Guo-Ming Sung, Chun-Ting Lee, and Sian-Wei Chao, “2+2 switched-current delta-sigma modulator with digital noise cancellation circuit”, Proc. Int. Symp. on Computer, Consumer and Control, Taichung, Taiwan, 1239, November 13-16, 2020, pp. 1-4.
Leenendra Chowdary Gunnam, Guo-Ming Sung, Lei-Wen Weng, and Te-Chia Fan, “2-1 switched-current multi-stage noise-shaping delta-sigma modulator with a digital noise-cancellation circuit,” IET Circuits, Devices and Systems, vol. 13, no. 3, pp. 327-336, 2019.
Guo-Ming Sung, Leenendra Chowdary Gunnam, and Shan-Hao Sung, “Switched-current sampled and hold circuit with digital noise cancellation circuit for 2+2 MASH ƩΔ modulator”, Proc. Computing Conference, London, United Kingdom, July 16-17, 2019, pp. 1-9.
Guo-Ming Sung, Leenendra Chowdary Gunnam, Wen-Sheng Lin, and Ying-Tzu Lai, “A third-order multibit switched-current delta-sigma modulator with switched-capacitor flash ADC and IDWA,” IEICE Trans. Electron., vol. E100-C, no. 8, pp. 1-10, Aug. 2017.
Leenendra Chowdary Gunnam, Lei-Wen Weng, and Guo-Ming Sung, ”2+1-order switched-current MASH delta-sigma ADC with the digital cancellation circuit”, Proc. IEEE Int. Conf. on Applied System Innovation (IEEE-ICASI 2017), Sapporo, Japan, 0369-E, May 13-17, 2017, pp. 1801-1804.
本研究著重在感測器智慧聯網系統與虛擬化雲端伺服器的設計與實現,主要是將控制指令透過網路傳送至遠端設備及感測裝置,藉以達到遠端監控的功能。本實驗室採用的是以Zigbee/WiFi無線通訊協定為主體的智慧感測器聯網系統,其包含有:Zigbee/WiFi的傳送端與接收端、MQTT與虛擬化雲端伺服器等子系統,並以樹莓派/FPGA開發板為硬體開發裝置,首先接收來自Zigbee/WiFi感測器所傳來的封包資訊,在樹莓派/FPGA開發板上解析封包並擷取裝置的shortAddress、clusterId、value等值,同時檢驗封包的正確性,再用MQTT將這三項數值發佈(publish)到雲端虛擬伺服器,傳送到資料庫內儲存,並以圖形化管理介面來檢視資料庫內的儲存資料;使用者可以透過手機或電腦網頁介面來隨時查看各項感測器的數值,藉由適當的計算與演算法模擬,可以對數值進行分析、比對與判斷,進而控制感測裝置的動作,達到物聯網(IoT)的功能。此外,本研究以Android智慧型手機為基礎,設計出一套物聯網居家照護系統,其具有兩大功能,第一項是智慧型居家監控功能,可以透過手機APP觀看家庭中的所有感測器數值,當感測器數值異常時,立刻通知使用者,確保居家安全;第二項是跌倒偵測功能,係利用內建的三軸加速度計、陀螺儀與方位感應器來實現此系統,當系統偵測到跌倒訊息時,會透過GPS或Google maps API提供位置訊息,爭取急救時間。上述研究成果已經陸續發表,代表性研究成果臚列如下:
Guo-Ming Sung, Guan-Xiang Tan, Qi-Hong Chen, and Yu-Ting Yang, “12-bit 200 MS/s digital transmitter for very-high-bit-rate digital subscriber loop”, in Proc. 30th Wireless and Optical Communications Conference (WOCC2021), Taipei Tech, Taipei, Taiwan, W-2, pp. 1-5, October 7-8, 2021.
Guo-Ming Sung, Chun-Ting Lee, and Chao-Rong Chen, “IoT-based home security system with a field programmable gate array development board”, Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC2020), Toronto, Canada, 542, October 11-14, 2020, pp. 1-4.
Guo-Ming Sung, Hsin-Kwang Wang, and Wen-Ta Su, “Smart home care system based on the Android platform”, Proc. 2020 IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC2020), Toronto, Canada, 543, October 11-14, 2020, pp. 1-5.
Guo-Ming Sung, Chong-Cheng Huang, and Meng-Lin Ho, “IoT-based home monitoring system with FPGA development board and Node-RED software”, Proc. Int. Symp. on Computer, Consumer and Control, Taichung, Taiwan, 1241, November 13-16, 2020, pp. 1-4.
Guo-Ming Sung, Yen-Shin Shen, Jia-Hong Hsieh, and Yu-Kai Chiu, “Internet of Things–based smart home system using a virtualized cloud server and mobile phone app,” International Journal of Distributed Sensor Networks, vol. 15, no. 5, pp. 1-12, 2019.
Guo-Ming Sung, Yen-Shih Shen, Lelisa T. Keno, and Chih-Ping Yu, “Internet-of-Things-based controller of a three-phase induction motor using a variable-frequency driver”, Proc. IEEE Eurasia Conf. on IOT, Communication and Engineering (IEEE ECICE 2019), Yunlin, Taiwan, T190045, October 3-6, 2019, pp.1-4.