Plenary Speakers
COVID-19 transmission models in the real world: models, data, and public policy
Simple mathematical models of COVID-19 transmission gained prominence in the early days of the pandemic. These models provided researchers and policymakers with qualitative insight into the dynamics of transmission and quantitative predictions of disease incidence. More sophisticated models incorporated new information about the natural history of COVID-19 disease and the interaction of infected individuals with the healthcare system, to predict diagnosed cases, hospitalization, ventilator usage, and death. Models also provided intuition for discussions about outbreaks, vaccination, and the effects of non-pharmaceutical interventions like social distancing guidelines and stay-at-home orders. But as the pandemic progressed, complex real-world interventions took effect, people everywhere changed their behavior, and the usefulness of simple mathematical models of COVID-19 transmission diminished. This challenge forced researchers (including me and my colleagues) to think more broadly about empirical data sources that could help predictive models regain their utility for guiding public policy. In this presentation, I will describe my view of the successes and failures of population-level transmission models in the context of the COVID-19 pandemic. I will outline the evolution of a project to predict COVID-19 incidence in the state of Connecticut, from development of a transmission model to engagement with public health policymakers and initiation of a new data collection effort. In particular, I will argue that a new data source -- passive measurement of close interpersonal contact via mobile device location data -- is a promising way to overcome many of the shortcomings of traditional transmission models. I conclude with a summary of the impact this work has had on the COVID-19 response in Connecticut and beyond.
Bio: Forrest W. Crawford is an Associate Professor of Biostatistics, Statistics & Data Science, Operations, and Ecology & Evolutionary Biology at Yale University. He is affiliated with the Center for Interdisciplinary Research on AIDS, the Institute for Network Science, the Computational Biology and Bioinformatics Program, and the Public Health Modeling Concentration. His research focuses on mathematical and statistical problems related to discrete structures and stochastic processes in epidemiology, public health, biomedicine, and social science. He received the NIH Director's New Innovator Award in 2016.
Statistical Aspects of COVID-19 Vaccine Trials
Operation Warp Speed (OWS) is the US government program to evaluate COVID-19 vaccine clinical trials with six different trials launched or planned. The speed, complexity, and scrutiny of the trials in our charged political environment and during a global pandemic is unprecedented. Multiple aspects of the trial require quickly yet carefully crafted statistical approaches for design, monitoring, and analysis. In this talk we give a brief overview of the OWS landscape, discussion the basic structure of vaccine clinical trials, and then provide a more in-depth workup of selected topics including monitoring for vaccine induced enhanced disease, correlating vaccine induced immune response to prevention of disease, and the consequences of a successful vaccine on the conduct of ongoing placebo-controlled trials.