TextRank is an unsupervised method for computing the extractive summary of a text based on PageRank algorithm. The expected end result for this application is a set of words or phrases that are representative for a given natural language text. The units to be ranked are therefore sequences of one or more lexical units extracted from text, and these represent the vertices that are added to the text graph. Any relation that can be defined between two lexical units is a potentially useful connection (edge) that can be added between two such vertices. We are using a co-occurrence relation, controlled by the distance between word occurrences: two vertices are connected if their corresponding lexical units co-occur within a window of maximum words, where can be set anywhere from 2 to 10 words. Co-occurrence links express relations between syntactic elements, and similar to the semantic links found useful for the task of word sense disambiguation (Mihalcea et al., 2004), they represent cohesion indicators for a given text.