N. Kirk, I. Gvozdanović, S. Petrović. Multilevel Sampling in Algebraic Statistics. Preprint, arxiv/2505.04062 (2025)
[Link] [Code]
N. Kirk, T. K. Rusch, Z. Zech, D. Rus. Low Stein discrepancy via Message-Passing Monte Carlo. Preprint, arXiv/2503.21103 (2025)
[Link] [Code]
F. J. Hickernell, N. Kirk, A. G. Sorokin. Quasi-Monte Carlo Methods: What, Why and How? Preprint, arXiv/2502.03644 (2025)
[Link]
A. Emmett-Iwanwi, N. Kirk. Enhancing neural autoregressive distribution estimators for image reconstruction. Preprint (2025)
[Link] [Code]
T. K. Rusch, N. Kirk, M. Bronstein, C. Lemieux, D. Rus. Message-Passing Monte Carlo: Generating low-discrepancy point sets via graph neural networks. Proc. Natl. Acad. Sci. U.S.A. (PNAS), 121 (40), e2409913121 (2024)
N. Kirk, C. Lemieux. An Improved Halton Sequence for Implementation in Quasi-Monte Carlo Methods. 2024 Winter Simulation Conference (WSC). IEEE, 2024
[Link]
N. Kirk, C. Lemieux, J. Wiart. Golden ratio nets and sequences. Funct. Approx. Comment. Math. 1-45, 10.7169/facm/240915-22-9 (2025)
[Link]
F. Clément, N. Kirk, F. Pausinger. Partitions for Stratified Sampling. Monte Carlo Methods Appl., 30 (2), 163-181 (2024)
[Link]
N. Kirk, F. Pausinger. On the Expected L2-discrepancy of Jittered Sampling. Unif. Dist. Theory, 18 (1), 65-82 (2023)
[Link]
N. Kirk. On Proinov's Lower Bound for the Diaphony. Unif. Dist. Theory, 15 (2), 39-72 (2020)
[Link]