Our brain is the most sophisticated machine on earth, when it comes to recognize things. We don't even notice how amazingly fast our brain processes information to make sense of what we see. We need only couple of samples of a new object to recognize it later on. Recent development in machine learning (deep learning, convolutional neural networks (CNNs), to be more specific) shows that the hierarchical models (inspired by our brain) are also very good at object recognition. My research is in the interface between the two: machine learning and the brain. I study to uncover the longstanding research question: what makes CNNs to be able to capture aspects of the cortical processing surprisingly well? Finding answer to this question will help us to understand how our brain solves vision.
Md Nasir Uddin Laskar, Luis G Sanchez Giraldo, and Odelia Schwartz, in Journal of Vision, vol 20, pp 1-21, 2020.
Luis G Sanchez Giraldo, Md Nasir Uddin Laskar, and Odelia Schwartz, in Current Openion in Neurobiology: Machine Learning, Big Data, and Neuroscience, impact factor 6.541, vol 55, pp 65-72, 2019.
Md Nasir Uddin Laskar, Luis G Sanchez Giraldo, and Odelia Schwartz, in ArXiv preprint, 2018.
Md Nasir Uddin Laskar, Luis G Sanchez Giraldo, and Odelia Schwartz, in Computational and System Neuroscience (COSYNE), 2017, SLC.
Md Nasir Uddin Laskar, Luis G Sanchez Giraldo, and Odelia Schwartz, in Brains and Bits: Neuroscience Meets Machine Learning at NIPS 2016, Barcelona.
Md Nasir Uddin Laskar, H. H. Viet, S. Y. Choi, S. Y. Lee, and TaeChoong Chung, Robotica, vol. 33, issue 04, pp. 865-883, Cambridge University Press, 2015.
H. H. Viet, Viet H. D., Md Nasir Uddin Laskar, and TaeChoong Chung, Applied Intelligence, vol. 39, issue 2, pp. 217-235, Springer, 2013.
PhD in Computer Science, University of Miami, 2020. Advisor: Professor Odelia Schwartz
Masters in Computer Engineering, Kyung Hee University, Korea, 2013. Advisor: Professor TaeChoong Chung