Join Our Team / 奈米光電實驗室 徵求大學部專題生。
推薦表現優良同學申請台積電研究助理獎助學金。
可選擇申請大專生專題計畫,國科會有獎助學金補助。
可選擇參與台積電計劃,推薦表現優良同學參與台積電暑期實習。
執行中計畫:
國科會計畫 (超穎介面晶片光譜儀:設計、製作及生醫應用)
台積電計畫
日月光計畫
學生榮譽事蹟:
2024 林○○同學榮獲台積電研究助理獎助學金
2023 林○○同學榮獲台積電研究助理獎助學金
2023 陳○○同學獲得國科會補助大專學生研究計畫
2023 洪○○同學獲聘參與台積電暑期實習
2023 洪○○同學榮獲台積電研究助理獎助學金
2023 許○○同學榮獲台積電研究助理獎助學金
有興趣加入本實驗室的同學可與林俊宏老師聯絡。
(可先寫 email 約定進ㄧ步瞭解的時間)
Email: chlin@ncku.edu.tw
本實驗室除了自行建立奈米壓印微影技術,並結合成大核心設施中心、國研院台灣半導體研究中心完善的奈米製程設備資源,同學在本實驗室、成大微奈米中心及國家奈米元件實驗室,可獲得完善的半導體製程訓練,並將此作為研究奈米電元件的堅強後盾。
目前多位畢業碩、博士同學在台積電研發部門工作。
研究領域:
本實驗室主要致力於奈米微影/奈米製造技術研究,以及應用奈米技術於奈米光電及生醫應用研究。
在半導體製程技術中,微影(Lithography)技術 (電子束微影術影片介紹) 不但是實現積體電路微小化的關鍵性技術之一,而且是半導體製程中最重要的一環,在現今先進半導體製程中,微影製程已經佔了整個半導體製造總成本的三分之一以上,由此可見其重要性。微影技術除了在奈米電子的製造扮演重要性的角色之外,亦是具體實現應用在光電、機械、生物等領域之各式奈米元件的關鍵性製程技術;各式光電元件的微型化與效能增進(舉凡顯示器元件、LED發光元件、太陽能電池元件等),均需微影技術的支持。由於奈米技術的實現,使得奈米光電的研究開創了許多過去所無法達到的可能性。
Relevant Terminology / 以下相關研究之專有名詞,可參考維基百科或奈米科學網:
光子晶體(Photonic crystal) (奈米科學網)
可高自由度地操控光線的行進
應用
n 表面電漿共振(Surface plasmon resonance)
利用光驅動的奈米電漿子馬達 (奈米科學網)
奈米高效率抗反射、高效率高穿透結構
Research Achievements 實驗室研究成果:
See the following classification of research findings (some studies may span multiple fields).
見以下研究分類整理(部分研究會同時包含多個領域)。
1. T.W. Yeh, Y.H. Hung, C.S. Chung, S.J. Yeh, H.Y. Lee, and C.H. Lin*, “Nanotransfer Printed Dual-Layer Metasurfaces for Infrared Cut-off Applications,” ACS Appl. Nano Mater. 2024, 7, 25593-25602 (IF: 5.3)
此為日月光產學計劃研究成果!
2. M.H. Li, J.J. Chen, Y.S. Chen, S.T. Lin, B.H. Lin, M.Y. Kuo, C.H. Lin*, H. Chen*, and J. Han, “Development of a broadband photodetector utilizing ZnO nanorods with grating structure fabricated via nanoimprint lithography,” Sens. Actuator A-Phys. 2024, 375, 115530 (IF: 4.1)
3. A.K. Sahoo, P.H. Chen, C.H. Lin*, R.S. Liu*, B.J. Lin*, T.S. Kao, P.W. Chiu, T.P. Huang, W.Y. Lai, J. Wang, Y.Y. Lee, and C.K. Kuan, “Development of EUV Interference Lithography for 25 nm Line/space patterns,” Micro. Nano. Eng. 2023, 20, 100215 (IF: 2.8)
4. H.L. Ho, J.Y. Yang, C.H. Lin, J. Shieh*, Y. Fang Huang, Y.H. Ho, T.S. Ko, C.C. Hsu, K.K. Ostrikov, “Plasma-Etched Nanograss Surface without Lithographic Patterning to Immobilize Water Droplet for Highly Sensitive Raman Sensing,” Adv. Mater. Interfaces 2023, 10, 2300291 (IF: 4.3)
此研究成果獲選為該雜誌之Journal Cover!
5. Y.J. Huang, W.H. Chang*, Y.J. Chen, and C.H. Lin*, “Synthesis of Metal/SU-8 Nanocomposites through Photoreduction on SU-8 Substrates,” Nanomaterials 2023, 13, 1784 (IF: 4.4)
6. Z.Y. Yang, W.H. Chang*, Y.C. Chiu, and C.H. Lin*, “Non-Invasive Detection of Bladder Cancer Markers Based on Gold Nanomushrooms and Sandwich Immunoassays,” ACS Appl. Nano Mater. 2023, 6, 5557-5567 (IF: 5.3)
此研究成果獲選為該雜誌之Journal Cover!
7. C.R. Sheu, T.J. Wang, and C.H. Lin*, “Homeotropic liquid crystal alignments through periodically unidirectional nano-wedges patterned by nanoimprint lithography,” Micro. Nano. Eng. 2021, 12, 100090 (IF: 2.8)
8. Y.J. Chen, W.H. Chang*, and C.H. Lin*, “Selective Growth of Patterned Monolayer Gold Nanoparticles on SU-8 through Photoreduction for Plasmonic Applications,” ACS Appl. Nano Mater. 2021, 4, 229-235 (IF: 5.3)
9. Y.J. Chen, W.H. Chang*, C.Y. Li, Y.C. Chiu, C.C. Huang, and C.H. Lin*, “Direct synthesis of monolayer gold nanoparticles on epoxy based photoresist by photoreduction and application to surface-enhanced Raman sensing,” Materials & Design 2021, 197, 109211 (IF: 7.6)
10. C.W. Lin, S.H. Chang, C.C. Huang, C.H. Lin*, “Plasmonic nanocavities fabricated by directed self-assembly lithography and nanotransfer printing and used as surface-enhanced Raman scattering substrates,” Microelectron. Eng. 2020, 227, 111309 (IF: 2.6)
11. W.H. Chang*, Z.Y. Yang, T.W. Chong, Y.Y. Liu, H.W. Pan, and C.H. Lin*, “Quantifying Cell Confluency by Plasmonic Nanodot Arrays to Achieve Cultivating Consistency,” ACS Sensors 2019, 4, 1816-1824 (IF: 8.3)
12. C.Y. Hu and C.H. Lin*, “A comparative study of inelastic scattering models at energy levels ranging from 0.5 keV to 10 keV,” Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2017, 394, 103-112 (IF: 1.158)
13. C.C. Liang, W.H. Chang, and C.H. Lin*, “Nanotransfer printing of plasmonic nano-pleat arrays with ultra-reduced nanocavity width using perfluoropolyether molds,” J. Mater. Chem. C 2016, 4, 4491-4504 (IF: 5.7)
14. C.C. Liang, C.H. Lin*, T.C. Cheng, J. Shieh, and H.H. Li, “Nanoimprinting of Flexible Polycarbonate Sheets with a Flexible Polymer Mold and Application to Superhydrophobic Surfaces,” Adv. Mater. Interfaces 2015, 2, 1500030 (IF: 4.3)
此研究成果獲選為該雜誌之Back Cover!
15. C.Y. Hu and C.H. Lin*, “Reverse ray tracing for transformation optics,” Opt. Express 2015, 23, 17622-17637 (IF: 3.2)
16. C.H. Lin, J. Shieh*, C.C. Liang, C.C. Cheng, and Y.C. Chen, “Decreasing reflection through the mutually positive effects of nanograss and nanopillars,” J. Mater. Chem. C 2014, 2, 3645-3650 (IF: 5.7)
17. C.H. Lin*, Y.C. Lin, and C.C. Liang, “Solid immersion interference lithography with conformable phase mask,” Microelectron. Eng. 2014, 123, 136-139 (IF: 2.6)
18. W.Y. Chen, C.H. Lin*, and W.T. Chen, “Plasmonic phase transition and phase retardation: Essential optical characteristics of localized surface plasmon resonance,” Nanoscale 2013, 5, 9950-9956 (IF: 5.8)
19. W.Y. Chen and C.H. Lin*, “Off-plane diffraction of extreme ultraviolet light caused by line width roughness,” Thin Solid Films 2012, 522, 79-84 (IF: 2.0)
20. C.H. Lin*, Y.M. Lin, C.C. Liang, Y.Y. Lee, H.S. Fung, B.Y. Shew, and S.H. Chen, “Extreme UV diffraction grating fabricated by nanoimprint lithography,” Microelectron. Eng. 2012, 98, 194-197 (IF: 2.6)
21. C.C. Liang, M.Y. Liao, W.Y. Chen, T.C. Cheng, W.H. Chang, and C.H. Lin*, “Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles,” Opt. Express 2011, 19, 4768-4776 (IF: 3.2)
22. C.H. Lin*, C.H. Fong, Y.M. Lin, Y.Y. Lee, H.S. Fung, B.Y. Shew, and J. Shieh, “EUV interferometric lithography and structural characterization of an EUV diffraction grating with nondestructive spectroscopic ellipsometry,” Microelectron. Eng. 2011, 88, 2639-2643. (IF: 2.6)
23. C.H. Lin*, H.H. Lin, W.Y. Chen, and T.C. Cheng, “Direct imprinting on a polycarbonate substrate with a compressed air press for polarizer applications,” Microelectron. Eng. 2011, 88, 2026-2029 (IF: 2.6)
24. C.T. Wu, C.H. Lin, C. Cheng, C.S. Wu, H.C. Ting, F.C. Chang, and F.H Ko*, “Design of Artificial Hollow Moth-Eye Structures Using Anodic Nanocones for High-Performance Optics,” Chem. Mater. 2010, 22, 6583-6589 (IF: 7.2)
25. W.Y. Chen and C.H. Lin*, “A standing-wave interpretation of plasmon resonance excitation in split-ring resonators,” Opt. Express 2010, 18, 14280-14292 (IF: 3.2)