Objectives:
Use pattern recognition to evaluate an indefinite integral.
Use a change of variables to evaluate an indefinite integral.
Use the General Power Rule for Integration to evaluate an indefinite integral.
Use a change of variables to evaluate a definite integral.
Evaluate a definite integral involving an even or odd function.
The Chain Rule produced a particular pattern during the differentiation process. We need to learn to recognize the f(g(x))g'(x) pattern so that we may "unchain" during the antidifferentiation process.
Using u-substitution (a.k.a. integration by substitution) on indefinite integrals. This process is your next resort when "unchaining" doesn't work.
Here is first custom example from class, and here are the two “Now you try” solutions.
Using u-substitution (a.k.a. integration by substitution) on definite integrals. For definite integrals, a shortcut may be used to save you a little time.
15 Multiple Choice
All topics are fair game, as usual
6 Free Response
Average Value and Mean Value Theorem for Integrals
Second FTC
Integration by "Unchaining"
Integration by U-Substitution (Definite and Indefinite)
Trig antiderivatives
Go to next page, Chapter 5.1.