研究概要 (Research Outline)
有機合成化学は、さまざまな有機化合物を効率よく合成可能な新たな手法を提供できるため、持続可能な開発目標(SDGs)の観点からも重要です。一方、有機合成化学への計算化学や情報科学の手法の適用については、いまだ発展の余地を残していました。
そこで私たちは、計算化学や情報科学の手法を活用した、新しい有機化合物合成法の開発を志向した研究を行います。これにより、有機化合物の効率的な供給法の確立や、その反応機構のより正確な理解を目指します。具体的な研究内容は以下の通りです。
Synthetic organic chemistry is important from the perspective of the Sustainable Development Goals (SDGs) because it can provide new methods to efficiently synthesize a wide variety of organic compounds. On the other hand, the application of computational chemistry and informatics to synthetic organic chemistry has not yet been fully developed.
Therefore, we will conduct research aimed at developing new synthetic methods for organic compounds by utilizing computational chemistry and informatics methods. This will lead to the establishment of efficient supply methods for organic compounds and a more accurate understanding of their reaction mechanisms. Specific research topics are as follows.
窒素原子を含む有機化合物は、医薬品を始めとするさまざまな場面で利用されており、その効率的な合成法の開発が望まれています。しかし、その合成には通常保護基と呼ばれる最終生成物には不要な化学構造を導入する必要があり、合成工程数の増加や不要な廃棄物の生成といった点で改善の余地を残していました。一方、不要な保護基を用いずに窒素原子を含む有機化合物を直接合成できれば、より環境調和性に優れた合成手法を提供することができます。しかし、そのような手法の開発は未発達であり、新たな方法論の開発が望まれていました。そこで私たちは、窒素原子を含む有機化合物の環境調和型合成法の開発を目指して研究を行いました。
窒素原子を含む有機化合物の合成方法の1つとして、ケチミンと呼ばれる炭素―窒素二重結合を有する有機化合物に対する触媒的付加反応が挙げられます。このような反応は、これまで反応性や選択性の制御を目的として、保護基を有するケチミンを用いて行われることが通例でした。そのため、保護基を持たないケチミンへの付加反応の開発は限られた反応形式しか知られていませんでした。
このような背景のもと、私たちは保護基を持たない無保護のケチミンを用いて、さまざまな付加反応が実現可能であることを示してきました。まず、末端アルキンの付加反応が無保護のケチミンを用いて実現可能であることを世界で初めて見出しました。続いて、無保護のケチミンがマンニッヒ型反応、フリーデル・クラフツ型反応、脱炭酸型マンニッヒ反応、アリール化反応、ストレッカー反応、ヒドロホスホニル化反応といったさまざまな立体選択的な付加反応に利用可能であることを示し、無保護のケチミンが幅広く利用可能であることを実証しました。また、得られた生成物は保護基を着脱することなくさまざまな誘導体へと直接変換が可能でした。この利点を活用し、生物活性物質の世界短工程での合成も実現できました。
以上のように、保護基を持たない無保護のケチミンに対するさまざまな付加反応が実現可能であることを示してきました。一方、原料である無保護のケチミンの合成については、有機金属試薬などによる古典的な合成手法が用いられており、精製操作の煩雑さや官能基共存性に改善の余地を残していました。そこで、私たちは次に原料である無保護のケチミンの効率的な合成手法の開発に取り組むことにしました。
本反応の開発にあたっては、入手容易なカルボニル化合物を原料とし、市販のビス(トリメチルシリル)アミンを窒素源として、種々反応条件を検討しました。その結果、ルイス酸触媒またはルイス塩基触媒を用いることで、無保護のケチミンが効率的に合成できることを見出しました。本反応条件は幅広い官能基が共存可能であり、古典的な合成手法では共存困難な官能基も共存可能でした。また、本反応の共生成物が低反応性である利点を活用して、得られた無保護のケチミンを精製することなく次の反応に用いるワンポット反応への応用を行いました。その結果、さまざまな有用な有機化合物が合成可能であることが判明し、不要な単離工程を省くことでより環境調和性に優れた合成方法を実現できました。
Catalytic nucleophilic addition to ketimines is a straightforward method to access amines having tetrasubstituted carbon stereocenters. These addition reactions, however, generally require N-protected ketimines, and protection/deprotection steps are inevitable to produce useful N-unprotected amines, which precludes the utility of these addition reactions.
The development of addition reactions to N-unsubstituted ketimines directly affords N-unprotected amines without protection/deprotection steps and thus could overcome the limitations. Nevertheless, the use of N-unsubstituted ketimines in addition reactions has been limited due to the inherent difficulties associated with the N-unsubstituted ketimines, namely, (1) control of reactivity and selectivity without the choice of appropriate N-protective groups and (2) retardation of the reactions caused by N-unprotected amine products.
With the efforts to address these issues, we found that addition reactions to N-unsubstituted ketimines proceeded in the presence of appropriate metal catalysts and organocatalysts to directly give N-unprotected amines with tetrasubstituted carbon stereocenters in high yield and stereoselectivity. In addition, the N-unprotected amine products were transformed into several biologically active compounds without protective group manipulations on the nitrogen atom, realizing the straightforward access to these pharmaceutically relevant products.
With the promising results, we next explored the improved synthetic methods of N-unsubstituted ketimines. After screening several catalysts using commercially available bis(trimethylsilyl)amine as a nitrogen source, we found that readily available ketones were transformed into N-unsubstituted ketimines in high yields. Furthermore, subsequent one-pot reactions of N-unsubstituted ketimines provided important nitrogen-containing organic compounds without isolation of N-unsubstituted ketimines.
52. Yuta Kondo, Hiroyuki Morimoto*, Takashi Ohshima*
Development of Novel Catalytic Direct Syntheses of N-Unsubstituted Ketimines and Their Applications to One-Pot Reactions
Synlett 2024, 35, 379–393. (invited account)
DOI: 10.1055/a-2131-3448
Published in 11th Singapore International Chemistry Conference (SICC-11)
50. Emna Mejri, Kosuke Higashida, Yuta Kondo, Anna Nawachi, Hiroyuki Morimoto, Takashi Ohshima, Masaya Sawamura*, Yohei Shimizu*
Visible-Light-Induced Aminochlorination of Alkenes
Org. Lett. 2023, 25, 4581–4585.
DOI: 10.1021/acs.orglett.3c01645
48. Koki Yamada, Yuta Kondo, Akihiko Kitamura, Tetsuya Kadota, Hiroyuki Morimoto*, Takashi Ohshima*
Organocatalytic Direct Enantioselective Hydrophosphonylation of N-Unsubstituted Ketimines for the Synthesis of α-Aminophosphonates
ACS Catal. 2023, 13, 3158–3163.
Selected as a Cover Picture
Press Release from Kyushu University
Highlighted by ChemStation (in Japanese)
Preprint published in ChemRxiv 2022.
DOI: 10.26434/chemrxiv-2022-0hd6r
46. Yuta Kondo, Yoshinobu Hirazawa, Tetsuya Kadota, Koki Yamada, Kazuhiro Morisaki, Hiroyuki Morimoto*, Takashi Ohshima*
One-Pot Catalytic Synthesis of α-Tetrasubstituted Amino Acid Derivatives via In Situ Generation of N-Unsubstituted Ketimines
Org. Lett. 2022, 24, 6594–6598.
DOI: 10.1021/acs.orglett.2c02587
44. Hiroyuki Morimoto*
Development of Greener Catalytic Synthetic Methods of Nitrogen-Containing Compounds Using N-Unprotected Ketimines
J. Synth. Org. Chem. Jpn. 2022, 80, 2–13. (in Japanese)
DOI: 10.5059/yukigoseikyokaishi.80.2
An article for Incentive Award in Synthetic Organic Chemistry, Japan
43. Tetsuya Kadota, Masanao Sawa, Yuta Kondo, Hiroyuki Morimoto* and Takashi Ohshima*
Catalytic Enantioselective Strecker Reaction of Isatin-Derived N-Unsubstituted Ketimines
Org Lett. 2021, 23, 4553–4558.
DOI: 10.1021/acs.orglett.1c01194
Selected as a Cover Picture
41. Kazuhiro Morisaki, Hiroyuki Morimoto* and Takashi Ohshima*
Recent Progress on Catalytic Addition Reactions to N-Unsubstituted Imines
ACS Catal. 2020, 10, 6924–6951. (Review)
40. Yuta Kondo, Hiroyuki Morimoto* and Takashi Ohshima*
Recent Progress towards the Use of Benzophenone Imines as an Ammonia Equivalent
Chem. Lett. 2020, 49, 497–504. (Highlight Review)
DOI: 10.1246/cl.200099
Highlighted as Inside Cover
39. Ryohei Yonesaki, Ibuki Kusagawa, Hiroyuki Morimoto*, Tamio Hayashi* and Takashi Ohshima*
Rhodium(I)/Chiral Diene-Catalyzed Enantioselective Addition of Boronic Acids to N-Unsubstituted Isatin-Derived Ketimines
Chem. Asian J. 2020, 15, 499–502.
Published in 100th Annual Meeting of the Chemical Society of Japan
Highlighted by ChemistryViews
38. Yuta Kondo, Tetsuya Kadota, Yoshinobu Hirazawa, Kazuhiro Morisaki, Hiroyuki Morimoto* and Takashi Ohshima*
Scandium(III) Triflate Catalyzed Direct Synthesis of N-Unprotected Ketimines
Org. Lett. 2020, 22, 120–125.
DOI: 10.1021/acs.orglett.9b04038
Press Release from Kyushu University JPN / ENG
35. Yuta Kondo, Kazuhiro Morisaki, Yoshinobu Hirazawa, Hiroyuki Morimoto* and Takashi Ohshima*
A Convenient Preparation Method for Benzophenone Imine Catalyzed by Tetrabutylammonium Fluoride
Org. Process Res. Dev. 2019, 23, 1718–1724.
Published in Honoring 25 Years of the Buchwald-Hartwig Amination
33. Masanao Sawa, Shotaro Miyazaki, Ryohei Yonesaki, Hiroyuki Morimoto* and Takashi Ohshima*
Catalytic Enantioselective Decarboxylative Mannich-Type Reaction of N-Unprotected Isatin-Derived Ketimines
Org. Lett. 2018, 20, 5393–5397.
DOI: 10.1021/acs.orglett.8b02306
32. Ryohei Yonesaki, Yuta Kondo, Walaa Akkad, Masanao Sawa, Kazuhiro Morisaki, Hiroyuki Morimoto* Takashi Ohshima*
3‐Mono‐Substituted BINOL Phosphoric Acids as Effective Organocatalysts in Direct Enantioselective Friedel‐Crafts‐Type Alkylation of N‐Unprotected α‐Ketiminoester
Chem. Eur. J. 2018, 24, 15211–15214.
Selected as a Hot Paper
28. Masanao Sawa, Kazuhiro Morisaki, Yuta Kondo, Hiroyuki Morimoto* and Takashi Ohshima*
Direct Access to N-Unprotected α- and/or β-Tetrasubstituted Amino Acid Esters via Direct Catalytic Mannich-Type Reactions using N-Unprotected Trifluoromethyl Ketimines
Chem. Eur. J. 2017, 23, 17022–17028.
Selected as a Hot Paper and a Cover Picture
Press Release from Kyushu University JPN / ENG
27. Kazuhiro Morisaki, Hiroyuki Morimoto* and Takashi Ohshima*
Direct access to N-unprotected tetrasubstituted propargylamines via direct catalytic alkynylation of N-unprotected trifluoromethyl ketimines
Chem. Commun. 2017, 53, 6319–6322.
DOI: 10.1039/C7CC02194A
Selected as a Inside back cover
Press Release from Kyushu University JPN / ENG
Highlighted by ChemStation (in Japanese)
アミドやエステルなどのカルボン酸誘導体は、安定な結合を有することから、医薬品やタンパク質・高分子などの様々な分野における重要な化学構造の1つとして利用されています。また、近年では有機合成化学分野における保護基や配向基としての利用も進んでおり、その需要は高まっています。一方、その安定性から、これらの結合の切断には一般に強酸や強塩基などの厳しい反応条件が必要であり、官能基共存性の面で改善の余地を残していました。
この課題に対し、私たちは付加中間体の安定化を基盤とする戦略に基づき、通常安定で切断が困難な不活性結合を、温和な条件下で切断可能とする新規変換反応を見出しました。これにより、安定なアミド結合やエステル結合などが、事前の活性化を経ずに直接切断できるようになりました。また、実験と計算化学を活用した反応機構解析により、付加中間体の安定化が反応の進行に重要であることも確認しました。
Carboxylic acid derivatives such as amides and esters are used as essential chemical structures in various fields such as pharmaceuticals, proteins, and polymers. In recent years, they have also been used as protective or directing groups in organic synthesis, and their demand is increasing. Due to their stability, however, cleavage of these bonds generally requires severe reaction conditions, such as strong acids and bases, leaving room for improvement in functional group tolerance.
To address the issue, we have discovered new reactions based on stabilizing addition intermediates, which enable inactive bonds, usually stable and difficult to cleave, to be cleaved under mild conditions. This strategy allows direct cleavage of stable amide and ester bonds without prior activation. Through experimental and computational analysis of the reaction mechanism, stabilization of the addition intermediates is essential for the reaction to proceed.
55. Bo Pang, Hai-Long Xin, Jeesoo Choi, Hiroyuki Morimoto*, Takashi Ohshima*
Sc(OTf)3‑Catalyzed C−C Bond Cleavage of Unactivated Acylazaarenes with 1,2-Diamines To Afford Azaarenes and Imidazoles
Org. Lett. 2025, 27, 2075–2080.
DOI: 10.1021/acs.orglett.5c00026
53. Jeesoo Choi, Anna Nawachi, Natsuki Saito, Yuta Kondo, Hiroyuki Morimoto*, Takashi Ohshima*
Evaluation of functional group compatibility and development of reaction-accelerating additives in ammonium salt-accelerated hydrazinolysis of amides
Front. Chem. 2024, 12, 1378746 (13 pages). (open access)
DOI: 10.3389/fchem.2024.1378746
Published as a part of Recent Advances in Synthesizing and Utilizing Nitrogen-containing Heterocycles
52. Hiroyuki Morimoto*
Development of Unactivated Bond Cleavage Reactions Under Mild Conditions Based on Stabilization of Addition Intermediates
Yakugaku Zasshi, 2023, 143, 1005–1012. (invited review for incentive award; in Japanese)
42. Hai-Long Xin, Bo Pang, Jeesso Choi, Walaa Akkad, Hiroyuki Morimoto* and Takashi Ohshima*
C–C Bond Cleavage of Unactivated 2-Acylimidazoles
J. Org. Chem. 2020, 85, 11592–11606.
Selected as a Featured Article
Highlighted by ChemistryViews
37. Hiroyuki Morimoto*, Walaa Akkad, Toru Deguchi and Takashi Ohshima*
Mechanistic Studies of Nickel(II)-Catalyzed Direct Alcoholysis of 8-Aminoquinoline Amides
Heterocycles 2020, 101, 471–485.
Published in Kaoru Fuji's Special Issues
34. Megumi Noshita, Yuhei Shimizu, Hiroyuki Morimoto*, Shuji Akai, Yoshitaka Hamashima, Noriyuki Ohneda, Hiromichi Odajima and Takashi Ohshima*
Ammonium Salt-Accelerated Hydrazinolysis of Unactivated Amides: Mechanistic Investigation and Application to a Microwave Flow Process
Org. Process Res. Dev. 2019, 23, 588–594.
Published in Japanese Society for Process Chemistry
26. Toru Deguchi, Hai-Long Xin, Hiroyuki Morimoto* and Takashi Ohshima*
Direct Catalytic Alcoholysis of Unactivated 8-Aminoquinoline Amides
ACS Catal. 2017, 7, 3157–3161.
24. Megumi Noshita, Yuhei Shimizu, Hiroyuki Morimoto* and Takashi Ohshima*
Diethylenetriamine-Mediated Direct Cleavage of Unactivated Carbamates and Ureas
Org Lett. 2016, 18, 6062–6065.
DOI: 10.1021/acs.orglett.6b03016
20. Yuhei Shimizu, Megumi Noshita, Yuri Mukai, Hiroyuki Morimoto* and Takashi Ohshima*
Cleavage of unactivated amide bonds by ammonium salt-accelerated hydrazinolysis
Chem. Commun. 2014, 50, 12623–12625.
DOI: 10.1039/C4CC02014F
Selected as a Back cover
19. Hiroyuki Morimoto*, Risa Fujiwara, Yuhei Shimizu, Kazuhiro Morisaki and Takashi Ohshima*
Lanthanum(III) Triflate Catalyzed Direct Amidation of Esters
Org. Lett. 2014, 16, 2018–2021.
DOI: 10.1021/ol500593v
17. Yuhei Shimizu, Hiroyuki Morimoto, Ming Zhang and Takashi Ohshima*
Microwave-Assisted Deacylation of Unactivated Amides Using Ammonium-Salt-Accelerated Transamidation
Angew. Chem., Int. Ed. 2012, 51, 8564–8567.
計算化学は、実験的な観測が困難な遷移状態や反応中間体などの構造やエネルギーに関する情報が得られることから、有機化学反応の反応機構を詳細に理解するために重要であり、近年その活用が増加しています。一方、実験と計算化学の両面から矛盾のない反応機構を提案する研究は十分には行われておらず、改善の余地が残されていました。
この課題に対し、私たちは実験により得られたギブズエネルギーなどの情報を踏まえて、計算化学によってそれらが再現できるかどうかを判断することで、反応機構の理解を可能とする手法の開発を目指して研究を行っています。このような研究を通じて、実験結果をふまえたより正確な反応機構の提案を可能とし、実験結果の理解のみならず予測にもつながる手法の開発を目指します。
Computational chemistry is an important method for gaining a detailed understanding of the reaction mechanisms of organic chemical reactions, such as transition states that are difficult to observe experimentally, and its use has been increasing in recent years. On the other hand, there has not been enough research to propose reaction mechanisms that are consistent with both experimental and computational chemistry, and there is still room for improvement.
To address this issue, we are conducting research with the aim of developing a method that enables us to understand reaction mechanisms by determining whether or not they can be reproduced using computational chemistry based on information such as Gibbs energies obtained from experiments. Through this kind of research, we are aiming to develop a method that enables us to propose more accurate reaction mechanisms that are consistent with experimental results, and that will lead not only to a better understanding of experimental results, but also to the prediction of reaction results.
55. Bo Pang, Hai-Long Xin, Jeesoo Choi, Hiroyuki Morimoto*, Takashi Ohshima*
Sc(OTf)3‑Catalyzed C−C Bond Cleavage of Unactivated Acylazaarenes with 1,2-Diamines To Afford Azaarenes and Imidazoles
Org. Lett. 2025, 27, 2075–2080.
DOI: 10.1021/acs.orglett.5c00026
54. Shunsuke Kataoka, Hiroyuki Morimoto*, Takashi Ohshima*
Primary Allylic Amine Synthesis via Pd-Catalyzed Direct Amination of Allylic Alcohols with Ammonium Acetate
J. Org. Chem. 2024, 89, 10693–10697.
48. Koki Yamada, Yuta Kondo, Akihiko Kitamura, Tetsuya Kadota, Hiroyuki Morimoto*, Takashi Ohshima*
Organocatalytic Direct Enantioselective Hydrophosphonylation of N-Unsubstituted Ketimines for the Synthesis of α-Aminophosphonates
ACS Catal. 2023, 13, 3158–3163.
Selected as a Cover Picture
Press Release from Kyushu University
Highlighted by ChemStation (in Japanese)
Preprint published in ChemRxiv 2022.
DOI: 10.26434/chemrxiv-2022-0hd6r
42. Hai-Long Xin, Bo Pang, Jeesso Choi, Walaa Akkad, Hiroyuki Morimoto* and Takashi Ohshima*
C–C Bond Cleavage of Unactivated 2-Acylimidazoles
J. Org. Chem. 2020, 85, 11592–11606.
Selected as a Featured Article
Highlighted by ChemistryViews
39. Ryohei Yonesaki, Ibuki Kusagawa, Hiroyuki Morimoto*, Tamio Hayashi* and Takashi Ohshima*
Rhodium(I)/Chiral Diene-Catalyzed Enantioselective Addition of Boronic Acids to N-Unsubstituted Isatin-Derived Ketimines
Chem. Asian J. 2020, 15, 499–502.
Published in 100th Annual Meeting of the Chemical Society of Japan
Highlighted by ChemistryViews
38. Yuta Kondo, Tetsuya Kadota, Yoshinobu Hirazawa, Kazuhiro Morisaki, Hiroyuki Morimoto* and Takashi Ohshima*
Scandium(III) Triflate Catalyzed Direct Synthesis of N-Unprotected Ketimines
Org. Lett. 2020, 22, 120–125.
DOI: 10.1021/acs.orglett.9b04038
Press Release from Kyushu University JPN / ENG
37. Hiroyuki Morimoto*, Walaa Akkad, Toru Deguchi and Takashi Ohshima*
Mechanistic Studies of Nickel(II)-Catalyzed Direct Alcoholysis of 8-Aminoquinoline Amides
Heterocycles 2020, 101, 471–485.
Published in Kaoru Fuji's Special Issues
34. Megumi Noshita, Yuhei Shimizu, Hiroyuki Morimoto*, Shuji Akai, Yoshitaka Hamashima, Noriyuki Ohneda, Hiromichi Odajima and Takashi Ohshima*
Ammonium Salt-Accelerated Hydrazinolysis of Unactivated Amides: Mechanistic Investigation and Application to a Microwave Flow Process
Org. Process Res. Dev. 2019, 23, 588–594.
Published in Japanese Society for Process Chemistry
32. Ryohei Yonesaki, Yuta Kondo, Walaa Akkad, Masanao Sawa, Kazuhiro Morisaki, Hiroyuki Morimoto* Takashi Ohshima*
3‐Mono‐Substituted BINOL Phosphoric Acids as Effective Organocatalysts in Direct Enantioselective Friedel‐Crafts‐Type Alkylation of N‐Unprotected α‐Ketiminoester
Chem. Eur. J. 2018, 24, 15211–15214.
Selected as a Hot Paper
23. Kazuhiro Morisaki, Masanao Sawa, Ryohei Yonesaki, Hiroyuki Morimoto*, Kazushi Mashima and Takashi Ohshima*
Mechanistic Studies and Expansion of the Substrate Scope of Direct Enantioselective Alkynylation of α-Ketiminoesters Catalyzed by Adaptable (Phebox)Rh(III) Complexes
J. Am. Chem. Soc. 2016, 138, 6194–6203.
DOI: 10.1021/jacs.6b01590
Press Release from Kyushu University JPN / ENG
Highlighted by Chem-Station
機械学習や深層学習などの情報科学は、さまざまな分野でその活用が進められています。一方、有機合成化学の分野でもその活用が近年活発に行われているものの、それらはいまだ発展途上であり、さらなる研究が必要とされています。
この課題に対し、私たちは機械学習の手法を用いた実験の効率化や、情報科学に利用可能な実験データの収集を通じて、情報科学を用いた有機合成の発展に貢献可能な研究を行っています。このような研究を通じて、必要な実験数の削減や、反応経路の提案などを可能とする新たな手法の開発を目指して研究を進めていきます。
Informatics, including machine learning and deep learning, is being applied in a wide range of fields. On the other hand, although its application in the field of organic synthetic chemistry has also been active in recent years, it is still in the developmental stage and further research is needed.
To address this issue, we are conducting research that could contribute to the development of organic synthesis using informatics, through the use of machine learning methods to improve the efficiency of experiments and the collection of experimental data that can be used in informatics. Through this kind of research, we will continue to develop new methods that will make it possible to reduce the number of experiments required and propose reaction pathways.
53. Jeesoo Choi, Anna Nawachi, Natsuki Saito, Yuta Kondo, Hiroyuki Morimoto*, Takashi Ohshima*
Evaluation of functional group compatibility and development of reaction-accelerating additives in ammonium salt-accelerated hydrazinolysis of amides
Front. Chem. 2024, 12, 1378746 (13 pages). (open access)
DOI: 10.3389/fchem.2024.1378746
Published as a part of Recent Advances in Synthesizing and Utilizing Nitrogen-containing Heterocycles
49. Natsuki Saito, Anna Nawachi, Yuta Kondo, Jeesoo Choi, Hiroyuki Morimoto*, Takashi Ohshima*
Functional Group Evaluation Kit for Digitalization of Information on the Functional Group Compatibility and Chemoselectivity of Organic Reactions
Bull. Chem. Soc. Jpn. 2023, 96, 465–474.
Selected as BCSJ Award Article and a Cover Picture
Press Release from Kyushu University and Kyutech