Reserach

Current Areas of Research Interests:

Mechanism/regulation and targeting of RNA splicing in cancers

RNA splicing is the major source of diversity in the transcriptome, a process which is under the control of a complex machinery known as spliceosome. Spliceosome can be of major or minor type with numerous U-series molecules. Splicing factor 3B (SF3B) complex possess number of SF3B genes in it including SF3B1. SF3B1 is an enigmatic molecule which act as a poor prognostic marker in chronic lymphocytic leukemia (CLL), and a good prognostic marker in case of myelodysplastic syndrome (MDS). We are involved in not only studying, but also targeting SF3B1 using splice muldators such as ladienolide-B, FD-895 or GEX1A in different maligancies to test anti-cancer potential of these macrolides. In addition, the another major focus is to profile and identify dysregulated alternative RNA splicing events (ARS) in different maligancies using cutting edge technology like RNAseq.


Publication on RNA Splicing:

  1. Kashyap A, et al (2022). Medical Oncology (In Press).

  2. Tripathi G, et al (2022). Current Stem Cell Research & Therapy (In Press).

  3. Kumar et al, et al (2022). Aging (Albany NY) 14(5): 2081-2100.

  4. Leon B, et al (2017). Angew Chem Int Ed Engl 56(40):12052-12063.

  5. Kumar D, et al (2016). ACS Chemical Biology 11(10):2716-2723.

  6. Dhar S, et al (2016). JACS 138(15):5063-5068.

  7. Kashyap MK, et al (2015). Haematologica 100(7): 945-954.

  8. Villa R, et al (2013). Journal of Medicinal Chemistry 56(17):6576-6582.

Patents

  1. US patent (9,604,973) awarded entitled “Anti-Cancer Polyketide Compounds” awarded in March 2017. Status: Active. Anticipated expiration: 2033, Link: https://techtransfer.universityofcalifornia.edu/NCD/23152.html

Molecular Pathophysiology, and Biology of Gastro-intestinal maligancies

Esophagus or wind pipe is an important organ seating on the top of stomach. There are two types of maligancies asscated with esophagus:


  1. Rao R, et al (2019). Proteomics Clin Appl 13(4):e1900006.

  2. Tungekar A, et al (2018). Scientific Reports 8(1):12715.

  3. Kashyap MK, et al (2018). Molecular Cancer 17: 54.

  4. Barbhuiya MA, et al (2018). Oncotarget 9:18422-18434.

  5. Kashyap MK (2015). Tumor Biology 36(11):8247-8257.

  6. Pawar H, et al (2015). The Scientific World Journal 2015:325721.

  7. Pawar H, et al (2013). Acta Histochemica 115:89-99.

  8. Marimuthu A, et al (2013). Proteomics - Clinical Applications 7(5-6):355-366.

  9. Kashyap MK, et al (2012-2013). Cancer Biomarkers 12:1-9.

  10. Kim MS, et al (2012). Journal of Proteome Research 11:5556-5563.

  11. Pawar H, et al (2011). Cancer Biology & Therapy 12(6):510-522.

  12. Marimuthu A, et al (2011). J Proteomics & Bioinformatics 4:74-82.

  13. Kashyap MK, et al (2010). Cancer Biology and Therapy 10:1-15.

  14. Kashyap MK, et al (2010). Cancers 2:133-142.

  15. Chaerkady R, et al (2009). Journal of Proteome Research 8: 1315-1326.

  16. Harsha HC, et al (2009). PLoS Medicine 6:e1000046.

  17. Kashyap MK, et al (2009). Cancer Biology and Therapy 8:6-16.

  18. Prasad TSK, et al (2009). Nucleic Acid Research 37(Database issue):D767-D772.

  19. Guha U, et al (2008). PNAS 105:14112-14117.

Targeting of the TME using small molecules/Abs in cancers


Mapping the tumor microenvironment (TME) for understanding the nexus between tumor and the cells of the microenvironment

Harnessing natural products for cancer prevention and treatment through Medicinal Chemistry/Chemical Biology/Drug Discovery

  1. Kashyap MK, et al (2017). Journal of Hematology and Oncology 10(1):112.


  1. Choi MY, et al (2016). Best Practice & Research in Clinical Haematology 29(1): 40-53.


  1. Kashyap MK, et al (2016). Oncotarget 7(3):2809-2822.