El Método de Destilación Sistémica (MDS) para Ingeniería de Prompts integra cinco fases que convierten la teoría en acción educativa. Primero se extraen marcos conceptuales como base; luego se destila la experiencia práctica que aporta lo que no está en los libros , manuales y demás documentos de apoyo académico. Enseguida se identifican conexiones sistemáticas, entendiendo la ingeniería de prompts como un ecosistema interdependiente. Este análisis se traduce en aprendizaje acelerado por principios, que facilita dominar lo esencial sin memorizar técnicas dispersas. Finalmente, se logra la aplicación práctica inmediata, llevando el conocimiento al aula y a la investigación de manera ágil y efectiva.
Argyris, C., & Schön, D. A. (1996). Organizational learning II: Theory, method, and practice. Reading, MA: Addison-Wesley.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901.
Federiakin, D. (2024). Prompt engineering as a new 21st century skill. Frontiers in Education. https://doi.org/10.3389/feduc.2024.1366434
Hu, S., & Wang, X. (2024). FOKE: A personalized and explainable education framework integrating foundation models, knowledge graphs, and prompt engineering. arXiv preprint. https://arxiv.org/abs/2405.03734
Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274
Lee, D., & Palmer, E. (2025). Prompt engineering in higher education: A systematic review to help inform curricula. International Journal of Educational Technology in Higher Education, 22(1). https://doi.org/10.1186/s41239-025-00503-7
Reza, M., Anastasopoulos, I., Bhandari, S., & Pardos, Z. A. (2024). PromptHive: Bringing subject matter experts back to the forefront with collaborative prompt engineering for educational content creation. arXiv preprint. https://arxiv.org/abs/2410.16547
Shinn, N., Cassano, F., Labash, B., Gopinath, A., Maynez, J., & Andreas, J. (2023). Reflexion: Language agents with verbal reinforcement learning. arXiv preprint. https://arxiv.org/abs/2303.11366
Senge, P. (2006). The fifth discipline: The art and practice of the learning organization (Rev. ed.). New York: Doubleday.
Woo, D. J., Wang, D., Yung, T., & Guo, K. (2024). Effects of a prompt engineering intervention on undergraduate students' AI self-efficacy, AI knowledge and prompt engineering ability: A mixed methods study. arXiv preprint. https://arxiv.org/abs/2408.07302