Euclidean geometry
H.S.M. Coxeter, S.L. Greitzer Geometry revisited.
F.G.M. Exercices de géométrie, comprenant l'esposé des méthodes géométriques et 2000 questions résolues.
G. Lemaire Méthodes de résolution et de discussion des problèmes de géométrie.
Ι.Γ. Ιωαννίδη Επίπεδος Γεωμετρία.
Foundations
P. Halmos Naive set theory.
D. Hilbert Foundations of geometry.
E. Landau Grundlagen der Analysis.
Linear algebra
I. Gel'fand Lectures on linear algebra.
W. Greub Linear algebra.
K. Hoffman, R. Kunze Linear algebra.
K. Nomizu Fundamentals of linear algebra.
Algebra
E. Artin Galois theory.
I. Herstein Topics in algebra.
N. Jacobson Basic algebra.
S. Lang Algebra.
B. van der Waerden Algebra.
Number theory
K. Chandrasekharan Introduction to analytic number theory.
G. Hardy, M. Riesz The general theory of Dirichlet's series.
G. Hardy, E. Wright An introduction to the theory of numbers. 
A. Ingham The distribution of prime numbers.
E. Landau Elementary number theory.
E. Titchmarsh The zeta function of Riemann.
I. Vinogradov Elements of number theory.
A. Weil Number theory for beginners.
Calculus
T. Apostol Calculus. Mathematical analysis.
H. Cartan Differential calculus.
R. Courant Differential and integral calculus.
R. Courant, F. John Introduction to calculus and analysis.
J. Dieudonné Infinitesimal calculus. Foundations of modern analysis.
I. Gel'fand, S. Fomin Calculus of variations.
G. Hardy, J. Littlewood, G. Polya Inequalities.
E. Landau Differential and integral calculus.
J. Marsden, A. Tromba Vector calculus.
G. Pólya, G. Szegö Problems and theorems in analysis.
W. Rudin Principles of mathematical analysis.
V. Smirnov A course of higher mathematics.
M. Spivak Calculus. Calculus on manifolds.
O. Toeplitz The calculus.
Topology
M. Greenberg, J. Harper Algebraic topology: a first course.
J. Kelley General topology.
K. Kuratowski Introduction to set theory and topology.
J. Munkres Topology.
G. Simmons Introduction to topology and modern analysis.
Geometry
W. Boothby An introduction to differentiable manifolds and Riemannian geometry.
Y. Matsushima Differentiable manifolds.
J. Milnor Topology from the differentiable viewpoint.
M. Spivak A comprehensive introduction to differential geometry, vol 1.
S. Sternberg Lectures on differential geometry.
F. Warner Foundations of differentiable manifolds and Lie groups.
Real analysis
G. Choquet Lectures on analysis.
G. Folland Real analysis.
L. Graves The theory of functions of real variables.
P. Halmos Measure theory.
A. Kolmogorov, S. Fomine Eléments de la theorie des fonctions et de l' analyse fonctionnelle.
E. Lieb, M. Loss Analysis.
A. Mukherjea, K. Pothoven Real and functional analysis.
I. Natanson Theory of functions of a real variable.
F. Riesz, B. Sz.-Nagy Functional analysis.
H. Royden Real analysis.
W. Rudin Real and complex analysis.
S. Saks Theory of the integral.
A. Taylor General theory of functions and integration.
R. Wheeden, A. Zygmund Measure and integral.
Functional Analysis
N. Akhieser Theory of approximation.
N. Akhiezer, I. Glazman Theory of linear operators in Hilbert space.
B. Bollobás Linear analysis.
H. Brezis Functional analysis.
G. Choquet Lectures on analysis.
G. Friedlander, M. Joshi Introduction to the theory of distributions.
K. Friedrichs Spectral theory of operators in Hilbert space.
G. Helmberg Introduction to spectral theory in Hilbert space.
A. Kolmogorov, S. Fomine Eléments de la theorie des fonctions et de l' analyse fonctionnelle.
P. Lax Functional analysis.
G. Lorentz Approximation of functions.
A. Mukherjea, K. Pothoven Real and functional analysis.
R. Phelps Lectures on Choquet theory.
M. Reed, B. Simon Functional analysis, vol 1.
F. Riesz, B. Sz.-Nagy Functional analysis.
A. Robertson, W. Robertson Topological vector spaces.
W. Rudin Functional analysis.
H. Schaefer Topological vector spaces.
M. Schechter Principles of functional analysis.
L. Schwartz Théorie des distributions.
A. Taylor Introduction to functional analysis.
K. Yosida Functional analysis.
R. Zimmer Essential results of functional analysis.
Complex analysis
L. Ahlfors Complex analysis. Lectures on quasiconformal mappings. Conformal invariants.
M. Andersson Topics in complex analysis.
C. Caratheodory Theory of functions.
H. Cartan Elementary theory of analytic functions of one or several complex variables.
J. Conway Functions of one complex variable, vol 1.
J. Dieudonné Infinitesimal calculus.
P. Duren Theory of H^p spaces.
W. Fuchs The theory of functions of one complex variable.
J. Garnett Bounded analytic functions. Analytic capacity and measure.
M. Heins Selected topics in the classical theory of functions of a complex variable.
K. Hoffman Banach spaces of analytic functions.
L. Hörmander An introduction to complex analysis in several variables.
K. Knopp Theory of functions.
P. Koosis Introduction to H^p spaces.
O. Lehto Univalent functions and Teichmüller space.
O. Lehto, K. Virtanen Quasiconformal mappings in the plane.
J. Littlewood Theory of functions.
R. Nevanlinna Eindeutige analytische Functionen.
G. Pólya, G. Szegö Problems and theorems in analysis.
C. Pommerenke Univalent functions.
W. Rudin Real and complex analysis.
S. Saks, A. Zygmund Analytic functions.
D. Sarason Complex function theory. Function theory on the unit disc.
E. Titchmarsh The theory of functions.
E. Whittaker, G. Watson A course of modern analysis.
Harmonic analysis
A. Besicovitch Almost periodic functions.
S. Bochner Lectures on Fourier integrals.
H. Bohr Almost periodic functions.
J. Duoandikoetxea Fourier analysis.
J. García-Cuerva, J. Rubio de Francia Weighted norm inequalities and related topics.
I. Gel'fand, D. Raikov, G. Shilov Commutative normed rings.
G. Hardy, W. Rogosinski Fourier series.
H. Helson Harmonic analysis.
Y. Katznelson An introduction to harmonic analysis.
L. Loomis Abstract harmonic analysis.
M. Reed, B. Simon Functional analysis, vol 2.
E. Stein Singular integrals and differentiability properties of functions. Topics in harmonic analysis related to the Littlewood-Paley theory.
E. Stein, G. Weiss Introduction to Fourier analysis on Euclidean spaces.
A. Torchinsky Real-variable methods in harmonic analysis.
N. Wiener The Fourier integral and certain of its applications.
T. Wolff Lecture notes in harmonic analysis.
A. Zygmund Trigonometric series. Intégrales singulières.
Potential theory
L. Ahlfors Conformal invariants.
M. Brelot Éléments de la théorie classique du potentiel.
L. Carleson Selected problems on exceptional sets.
O. Frostman Potentiel d' équilibre et capacité des ensembles.
W. Fuchs The theory of functions of one complex variable.
J. Garnett Analytic capacity and measure.
W. Hayman, P. Kennedy Subharmonic functions, vol 1.
M. Heins Selected topics in the classical theory of functions of a complex variable. Potential theory.
N. Landkov Foundations of modern potential theory.
T. Rado Subharmonic functions.
M. Tsuji Potential theory in modern function theory.
Differential equations
W. Boyce, R. di Prima Elementary differential equations and boundary value problems.
E. Coddington, N. Levinson Theory of ordinary differential equations.
L. Evans Partial differential equations.
G. Folland Introduction to partial differential equations.
P. Hartman Ordinary differential equations.
L. Hörmander Linear partial differential operators. The analysis of linear partial differential operators, vol 1.
W. Hurewicz Lectures on ordinary differential equations.
F. John Partial differential equations.
L. Pontryagin Ordinary differential equations.
D. Sánchez Ordinary differential equations and stability theory: an introduction.
Probability theory
K. L. Chung A course in probability theory.
H. Cramér Random variables and probability distributions.
W. Feller An introduction to the theory of probability and its applications.
B. Gnedenko Theory of probability.
B. Gnedenko, A. Kolmogorov Limit distributions for sums of independent random variables.
A. Khinchin Mathematical foundations of information theory. Mathematical foundations of statistical mechanics.
A. Kolmogorov Foundations of the theory of probability.
J. Lamperti Probability.
M. Loève Probability theory.
Biographical
J. Littlewood Miscellany.