Publications

15. Skirzewski M#, Princz-Lebel O, German-Castelan L, Crooks AM, Kyungwook Kim G, Henke Tarnow S, Reichelt A, Memar S, Palmer D, Li Y, Rylett J, Saksida LM, Prado VF, Prado MAM#, Bussey TJ#. (2022) Cholinergic-Dopaminergic Interaction in the Nucleus Accumbens Underlies D1- and D2-SPN Activity and Approaches to Reward-Predicting Cues. Nature Communications. 13:7924, doi: 10.1038/s41467-022-35601-x

14. Erben L, Welday J, Cronin ME, Murphy R, Skirzewski M, Karavanova I, Vullhorst D, Carroll SL, Buonanno A. (2022) Developmental, neurochemical, and behavioral analyses of isoform-specific ErbB4 Cyt-1 knockout mice. J Neurochemistry, doi: 10.1111/jnc.15612

13. Skirzewski M, Molotchnikoff S, Hernandez L, Maya-Vetencourt JF. (2022) Multisensory integration: is medial prefrontal cortex signaling relevant for the treatment of higher-order visual dysfunctions? Frontiers Molecular Neuroscience, 14:806376. doi: 10.3389/fnmol.2021.806376

12. Kljakic O*, Janickova H*, Skirzewski M, Reichelt A, Memar S, El Mestikawy S, Li Y, Saksida LM, Bussey TJ, Prado VF, Prado MAM. (2022) Functional dissociation of behavioral effects from acetylcholine and glutamate released from cholinergic striatal interneurons. FASEB J, 36: e22135. doi: 10.1096/fj.202101425R. *denotes co-first authorship.

11. Sullivan J, Dumont J, Memar S, Skirzewski M, Wan J, Mofrad M, Ansari H, Li Y, Muller L, Prado V, Prado M, Saksida L, Bussey T. (2021) New frontiers in translational research: Touchscreens, open science, and the mouse Translational research accelerator platform (MouseTRAP). Genes, Brain and Behavior, 20: e12705. doi: 10.1111/gbb.12705

10. Jing M, Li Y, Zeng J, Huang P, Skirzewski M, Kljakic O, Peng W, Qian T, Tan K, Wu R, Zhang S, Pan S, Xu M, Li H, Saksida LM, Prado VF, Bussey T, Prado M, Chen L, Cheng H, Li Y. (2020) An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nature Methods, 17: 1139–1146. doi: 10.1038/s41592-020-0953-2

9. Skirzewski M, Cronin M, Murphy R, Fobbs W, Kravitz A and Buonanno A. (2020) ErbB4 null mice display altered mesocorticolimbic and nigrostriatal dopamine levels, as well as deficits in cognitive and motivational behaviors. eNeuro, 7(3): 0395-19.2020. doi: 10.1523/ENEURO.0395-19

8. Skirzewski M, Karavanova I, Shamir A, Erben L, Garcia-Olivares J, Shin JH, Vullhorst D, Alvarez VA, Amara SG, Buonanno A. (2018) ErbB4 signaling in dopaminergic axonal projections increases extracellular dopamine levels and regulates spatial/working memory behaviors. Molecular Psychiatry, 23(11): 2227-2237. doi: 10.1038/mp.2017.132

7. Yan L*, Shamir A*, Skirzewski M*, Leiva-Salcedo E, Kwon OB, Karavanova I, Paredes D, Malkesman O, Bailey KR, Vullhorst D, Crawley JN, Buonanno A. (2018) Neuregulin-2 ablation results in dopamine dysregulation and severe behavioral phenotypes relevant to psychiatric disorders. Molecular Psychiatry, 23(5): 1233-1243. doi: 10.1038/mp.2017.22. *denotes co-first authorship.

6. Beas BS*, Wright BJ*, Skirzewski M, Leng Y, Hyun JH, Koita O, Ringelberg N, Kwon HB, Buonanno A, Penzo MA. (2018) The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism. Nature Neuroscience, 21(7): 963-973. doi: 10.1038/s41593-018-0167-4. *denotes co-first authorship.

5. De Pace R, Skirzewski M, Damme M, Mattera R, Mercurio J, Foster AM, Cuitino L, Jarnik M, Hoffmann V, Morris HD, Han TU, Mancini GMS, Buonanno A, Bonifacino JS. (2018) Altered distribution of ATG9A and accumulation of axonal aggregates in neurons from a mouse model of AP-4 deficiency syndrome. PLOS Genetics, 14(4): e1007363. doi: 10.1371/journal.pgen.1007363

4. Friend DM, Devarakonda K, O'Neal TJ, Skirzewski M, Papazoglou I, Kaplan AR, Liow JS, Guo J, Rane SG, Rubinstein M, Alvarez VA, Hall KD, Kravitz AV. (2017) Basal ganglia dysfunction contributes to physical inactivity in obesity. Cell Metabolism, 25(2): 312-321. doi: 10.1016/j.cmet.2016.12.001

3. Skirzewski M#, López W, Mosquera E, Betancourt L, Catlow B, Chiurillo M, Loureiro N, Hernández L, Rada P. (2011) Enhanced GABAergic tone in the ventral pallidum: memory of unpleasant experiences? Neuroscience, 196: 131-46. doi: 10.1016/j.neuroscience.2011.08.058. #denotes corresponding author.

2. Skirzewski M#, Hernandez L, Schechter LE, Rada P. (2010) Acute lecozotan administration increases learning and memory in rats without affecting anxiety or behavioral depression. Pharmacology, Biochemistry & Behavior, 95(3): 325-30. doi: 10.1016/j.pbb.2010.02.008. #denotes corresponding author.

1. Rada P, Colasante C, Skirzewski M, Hernandez L, Hoebel B. (2006) Behavioral depression in the swim test causes a biphasic, long-lasting change in accumbens acetylcholine release, with partial compensation by acetylcholinesterase and muscarinic-1 receptors. Neuroscience, 141(1): 67-76. doi: 10.1016/j.neuroscience.2006.03.043