Here is a list of my papers so far. More of them coming soon...
Articles
Mauricio Che, Fernando Galaz-García, Luis Guijarro, Ingrid Amaranta Membrillo Solis. Metric Geometry of Spaces of Persistence Diagrams. Journal of Applied and Computational Topology, 2024. DOI:10.1007/s41468-024-00189-2.
Mauricio Che, Fernando Galaz-García, Luis Guijarro, Ingrid Amaranta Membrillo Solis, Motiejus Valiunas. Basic Metric Geometry of the Bottleneck Distance. Proc. Amer. Math. Soc. 152, 3575-3591, 2024. DOI: https://doi.org/10.1090/proc/16776.
Andrés Ahumada Gómez, Mauricio Che. Gromov-Hausdorff convergence of metric pairs and metric tuples (2023). Differential Geometry and its Applications 94, Paper No. 102135, 2024. DOI:10.1016/j.difgeo.2024.102135.
Mauricio Che, Jesús Núñez-Zimbrón. Ball covering property and number of ends of CD spaces with non-negative curvature outside a compact set, Archiv der Mathematik 119, 213–224, 2022. DOI:10.1007/s00013-022-01753-x.
Preprints
Mauricio Che, Raquel Perales, Christina Sormani. Gromov's Compactness Theorem for the Intrinsic Timed-Hausdorff Distance. arXiv:2510.13069
Andrés Ahumada Gómez, Mauricio Che, Manuel Cuerno. Metric pairs and tuples in theory and applications. arXiv:2505.12735.
Mauricio Che, Fernando Galaz-García, Martin Kerin, Jaime Santos-Rodríguez. Isometric Rigidity of Metric Constructions with respect to Wasserstein Spaces. arXiv:2410.14648.
Mauricio Che. Optimal partial transport for metric pairs. arXiv:2406.17674.
In preparation
Joe Barton, Tobias Beran, Mauricio Che, Sebastian Gieger, Jona Röhrig, Felix Rott. Splitting theorem for Lorentzian Hadamard spaces.
Saul Burgos, Mauricio Che, Miguel Prados Abad. Timelike ideal boundary of non-positively curved Lorentzian length spaces.
Mauricio Che, Sebastian Gieger, Clemens Sämann. Doubling in Lorentzian length spaces.
Mauricio Che, Fernando Galaz Fontes, Fernando Galaz-García. Banach-ideal metrics on spaces of persistence diagrams.
PhD thesis
Mauricio Che. Geometry of generalised spaces of persistence diagrams and optimal partial transport for metric pairs. PhD thesis, Durham University, 2024. Durham e-Theses.
Expository
Mauricio Che. El problema de Erdős-Perelman, Miscelánea Matemática, 71, 63-81, 2021. DOI: 10.47234/mm.7107.
Mauricio Che. On the number of ends of an Alexandrov space, Abstraction & Application, 27, 66-88, 2020. (link)
Mauricio Che, Didier Solis Gamboa. Espacios homogéneos de curvatura seccional positiva, Abstraction & Application, 26, 13-31, 2019. (link)