Tidal Disruption Events

If a star wanders too close to a supermassive black hole, the tidal forces of the black hole tear the star apart in a so-called tidal disruption event, or TDE. Afterwards, the stellar debris form a thin and elongated stream of gas that revolves around the black hole before falling back towards the disruption site. The stellar material then suddenly fuels the compact object producing a bright flare that makes TDEs unique probes of otherwise quiescent galactic nuclei. A central theme in our research is to understand TDEs observational signatures.

Simulations of tidal disruption events


If a star wanders too close to a supermassive black hole, the tidal forces of the black hole tear the star apart in a so-called tidal disruption event, or TDE. Afterwards, the stellar debris form a thin and elongated stream of gas that revolves around the black hole before falling back towards the disruption site. The stellar material then suddenly fuels the compact object producing a bright flare that makes TDEs unique probes of otherwise quiescent galactic nuclei. A central theme in our research is to understand TDEs observational signatures.

Electromagnetic signatures of tidal disruption events


If a star wanders too close to a supermassive black hole, the tidal forces of the black hole tear the star apart in a so-called tidal disruption event, or TDE. Afterwards, the stellar debris form a thin and elongated stream of gas that revolves around the black hole before falling back towards the disruption site. The stellar material then suddenly fuels the compact object producing a bright flare that makes TDEs unique probes of otherwise quiescent galactic nuclei. A central theme in our research is to understand TDEs observational signatures.

Magnetic field evolution in tidal disruption events


If a star wanders too close to a supermassive black hole, the tidal forces of the black hole tear the star apart in a so-called tidal disruption event, or TDE. Afterwards, the stellar debris form a thin and elongated stream of gas that revolves around the black hole before falling back towards the disruption site. The stellar material then suddenly fuels the compact object producing a bright flare that makes TDEs unique probes of otherwise quiescent galactic nuclei. A central theme in our research is to understand TDEs observational signatures.