150. Correlative insights into the degradation pathways and direct regeneration healing mechanisms of spent lithium-ion battery active materials. Kiran K Garlapati, Jyotirekha Dutta, Bharat B. Panigrahi, Surendra K. Martha, Journal of Power Sources (2025) https://doi.org/10.1016/j.jpowsour.2025.237528 (I.F. 7.9)
149. Understanding critical bottlenecks of anion intercalation into graphite: operando gas evolution, host fluorination, site blocking, and structural issues. Shuvajit Ghosh, Anshid Kuttasseri, S. Akhila, Sayan Khamaru, Naga Phani B. Aetukuri, Arup Mahata, Surendra K. Martha, Chemical Engineering Journal (2025) https://doi.org/10.1016/j.cej.2025.164880 (I.F. 13.2)
148. Low-Temperature Synthesis of Battery Grade Graphite: Mechanistic Insights, Electrochemical Performance, and Techno-Economic Prospects. Kiran K Garlapati, Shuvajit Ghosh, Jyotirekha Dutta, Bharat B. Panigrahi, Surendra K. Martha, Advanced energy Materials(2025) https://doi.org/10.1002/aenm.202500501 (I.F. 26)
147. Sulfur-doped biocarbon as a sulfur host and a polysulfide trapping agent in lithium-sulfur batteries..J.Priscilla Grace, Surendra K. Martha, Ionics (2025) https://doi.org/10.1007/s11581-025-06308-y (I.F. 2.6)
146. High Surface Area Carbon Composite LiMn0.8Fe0.2PO4 as High-Power Electrodes for Lithium-Ion Batteries. Monira Parvin, Subhajit Bhowmik, Madhushri Bhar and Surendra K. Martha, Journal of The Electrochemical Society (2025) DOI 10.1149/1945-7111/adc956 (I.F. 3.3)
145. Design and performance analysis of high surface area carbon and LiNi0.8Mn0.1Co0.1O2 composite as cathode for lithium-ion battery capacitors. Subhajit Bhowmik, Jyotirekha Dutta, Tausif Ahamad Ansari, Surendra K. Martha, Electrochimica Acta (2025) https://doi.org/10.1016/j.electacta.2025.145703 (I.F. 5.6)
144. Feasibility of High Surface Area Carbon-LiNi0.5Mn1.5O4 Composite Cathode and Hard Carbon Anode for Lithium-Ion-Based Hybrid Devices. Subhajit Bhowmik, Surendra K. Martha, Journal of The Electrochemical Society (2025) DOI 10.1149/1945-7111/adb7c6 (I.F. 3.3)
143. Room-Temperature Synthesis of Carbon-Encapsulated Na3V2O2(PO4)2F Nanoparticles: A Cost-Effective, High- Power Cathode for Sodium-Ion Batteries. Mohammad Zaid, Kiran Kumar Garlapati, Vilas G. Pol, Surendra K. Martha, Applied Energy Materials (2025) https://doi.org/10.1021/acsaem.4c02903 (I.F. 5.5)
142. Exploring the Ni-Mn–O composite as an anode for lithium-ion capacitors. Subhajit Bhowmik, Madhushri Bhar, Udita Bhattacharjee, Surendra K. Martha, Journal of Solid State Electrochemistry (2025) https://doi.org/10.1007/s10008-024-06183-z (I.F. 2.6)
141. Adverse to beneficial: upcycling residual lithium compounds on LiNi0.8Mn0.1Co0.1O2 into a stabilizing Li1+xMn2−xO4 interface. Jyotirekha Dutta, Shuvajit Ghosh, Vilas G. Pol, Surendra K. Martha, Journal of Materials Chemistry A (2025) https://doi.org/10.1039/D5TA03286E (I.F. 9.5)
140. Powering the extreme: rising world of batteries that could operate at ultra-low temperatures. Sung-Kwang Jung, Jyotirekha Dutta, Surendra K. Martha, Martin Byung-Guk Jun. Vilas G. Pol, Chemical Communications (2025) https://doi.org/10.1039/D5CC02279G (I.F. 4.2)
139. Reduced graphene oxide derived from the spent graphite anodes as a sulfur host in lithium–sulfur batteries. J.Priscilla Grace, Y. Kaliprasad, Surendra K. Martha, Energy Advances (2025) https://doi.org/10.1039/D4YA00480A (I.F. 4.3)
138. Conducting LixPOy Interface Generated From Insulating Residual Lithium Compounds on LiNi0.8Mn0.1Co0.1O2 Surface Improves Cycle Life and Assists in Fast Cycling, Jyotirekha Dutta, Shuvajit Ghosh, Kiran K. Garlapati, Surendra K. Martha, Small (2024) https://doi.org/10.1002/smll.202405432 (I.F. 12.1)
137. V2O5-MnO2 nanocomposites as an efficient electrode material for high-performance aqueous supercapacitors. Tapan K. Pani, Sadananda Muduli, Kiran Kumar Garlapati, Surendra K. Martha, Materials Today Sustainability (2024) https://doi.org/10.1016/j.mtsust.2024.101010 (I.F. 7.9)
136. Harnessing Free-Standing Flexible Dual Carbon Lithium-Ion Capacitors with Carbon Fiber−Pitch Composite Electrodes. Subhajit Bhowmik, Satyabati Mishra, Maurya Akshaykumar R, Udita Bhattacharjee, Surendra K. Martha, ACS Applied Energy Materials (2024) DOI: 10.1021/acsaem.4c02069 (I.F.5.5)
135. Effect of concentration of dextrose-derived hard carbon anode on the electrochemical performance for sodium-ion batteries. Rupan Das Chakraborty, Tapan K. Pani, Surendra K. Martha, Journal of Solid State Electrochemistry (2024) https://doi.org/10.1007/s10008-024-06136-6 (I.F. 2.6)
134. LiNi0.5Mn1.5O4 Addition to Anion-Storing Graphite Cathode Yields Multifaceted Benefits to Dual Graphite Batteries. Shuvajit Ghosh, Jyotirekha Dutta, Sayan Khamaru, Sateesh Mulkapuri, Surendra K. Martha, Journal of The Electrochemical Society (2024) DOI: 10.1149/1945-7111/ad88ae (I.F. 3.3)
133. AlCoCrFeNi HEA reinforced Al–Si–Mg alloy composite through hot-press sintering. Kiran Kumar Garlapati, Subhendu Naskar, Surendra K. Martha, Bharat B. Panigrahi, Bulletin of Materials Science (2024) https://doi.org/10.1007/s12034-024-03358-2 (I.F. 2.1)
132. LiF/ LixPOy/ LixPOyFz-based artificial interface on graphitic cathode for improving the cycle life of dual ion batteries. Shuvajit Ghosh, Jyotirekha Dutta, Kiran kumar Garlapati, Monira Parvin, Charul Gupta, Harish N. Dixit, Surendra K. Martha, Journal of Power Sources (2024) https://doi.org/10.1016/j.jpowsour.2024.235440 (I.F. 8.1)
131. Synergistic effect of in-situ carbon-coated mixed phase iron oxides and 3d electrode architectures as anodes for high-performance sodium-ion batteries. Rupan Das Chakraborty, Subhajit Bhowmik, Surendra K. Martha, Electrochimica Acta (2024) https://doi.org/10.1016/j.electacta.2024.144952 (I.F.5.5)
130. A short review on fast charging of Ni-rich layered oxide cathodes. Jyotirekha Dutta,Shuvajit Ghosh, Surendra K. Martha, Journal of Solid State Electrochemistry (2024) https://doi.org/10.1007/s10008-024-06031-0 (I.F.2.6)
129. FeS2@Ti3C2Tx Pseudocapacitive Anode for Supercapacitors: Effect of Counter-Electrode Electrochemical Behavior on Supercapacitor Metrics. Kiran Kumar Garlapati, Subhendu Naskar, Surendra K Martha, Bharat B. Panigrahi,ACS Applied Energy Materials (2024)https://doi.org/10.1021/acsaem.4c00962 (I.F.5.4)
128. Carbon nano-onions triggering the supercapacitive performance of PEDOT-wrapped MoO3 microstructures in hybrid ultracapacitors. Sadananda Muduli,Tapan Kumar Pani, Kiran Kumar Garlapati, Surendra K Martha, Journal of Energy Storage (2024)https://doi.org/10.1016/j.est.2024.112396 (I.F.8.9)
127. Synergistic effect of 3D-electrode architecture and FeS2 decorated graphene sheet as a catalytic cathode in lithium-sulfur battery. J. Priscilla Grace , Surendra K. Martha ,Journal of Energy Storage (2024) https://doi.org/10.1016/j.est.2024.111585 (I.F.8.9)
126. Synergistic Effect of 3D Electrode Architecture and In Situ Carbon Coating on the Electrochemical Performance of SnO2 Anodes for Sodium-Ion Batteries. Rupan Das Chakraborty, Madhushri Bhar, Subhajit Bhowmik, Surendra K. Martha ,Journal of The Electrochemical Society (2024) DOI 10.1149/1945-7111/ad3b74 (I.F.3.1)
125. Soft carbon in non-aqueous rechargeable batteries: a review of its synthesis, carbonization mechanism, characterization, and multifarious applications. Shuvajit Ghosh, Mohammad Zaid, Jyotirekha Dutta, Monira Parvin, Surendra K. Martha,Energy Advances (2024) DOI 10.1039/d4ya00174e (I.F.3.2)
124. Binderless Electrodeposited NiCo2S4-MWCNT as a Potential Anode Material for Sodium-Ion Batteries. RD Chakraborty, JP Grace, KK Garlapati, SK Martha , Journal of The Electrochemical Society (2024) DOI 10.1149/1945-7111/ad63d3 (I.F. 3.1)
123. VOx anchored Ti3C2Tx MXene heterostructures for high-performance 2.2 V supercapacitors. Kiran kumar Garlapati, Surendra K Martha, and Bharat B. Panigrahi, Journal of Power Sources (2024) https://doi.org/10.1016/j.jpowsour.2024.234503 (I.F. 8.1)
122. Transforming Residual Lithium Compounds on the LiNi0.8Mn0.1Co0.1O2 Surface into a Li–Mn–P–O-Based Composite Coating for Multifaceted Improvements. Jyotirekha Dutta, Shuvajit Ghosh, and Surendra K. Martha, ACS Applied Materials & Interfaces (2024) https://doi.org/10.1021/acsami.3c19371 (I.F. 8.3)
121. Integrating antimony-based compounds and hard carbon spheres for enhanced Na-ion storage. Sourav Ghosh, V Kiran Kumar, Subhajit Bhowmik, Surendra K Martha, Journal of Energy Storage (2024) https://doi.org/10.1016/j.est.2024.111090 (I.F. 8.9)
120. Designing in-situ carbon-coated mixed phase iron oxides anode coupled with a heteroatom doped porous carbon cathode for lithium-ion capacitors. Subhajit Bhowmik, Udita Bhattacharjee, Surendra Kumar Martha, Electrochimica Acta (2024) https://doi.org/10.1016/j.electacta.2024.143995 (I.F. 6.6)
119. Synergistic Effect of CNT-TiO2 Catalyst and 3D Electrode Architecture for Electrochemical Performance in Lithium-Sulfur Batteries. J Priscilla Grace, Sourav Ghosh, Madhushri Bhar, Surendra K Martha, Journal of The Electrochemical Society (2024) 10.1149/1945-7111/ad1a1e (I.F. 3.9)
118. Mechanistic insights into the solvent-assisted thermal regeneration of spent graphite and its upcycling into Dual graphite battery. Shuvajit Ghosh, Madhushri Bhar, Udita Bhattacharjee, Kali Prasad, Satheesh Krishnamurthy, Surendra K Martha, Journal of Materials Chemistry A (2024) https://doi.org/10.1039/D4TA00668B (I.F. 11.9)
117. Electrolyte-concentration-dependent formation of artificial interface for prolonging the cycle life of Li-based anion storage batteries. Shuvajit Ghosh, Surendra K Martha, Journal of Energy Storage (2024) https://doi.org/10.1016/j.est.2023.109866 (I.F. 8.9)
116. Differences between cation and anion storage electrochemistry of graphite and its impact on dual graphite battery, Shuvajit Ghosh, Dhritismita Sarma, Arup Mahata, Surendra K Martha, Journal of Power Sources (2024) https://doi.org/10.1016/j.jpowsour.2023.233721 (I.F. 9.2)
115. Potential dependent formation of fluorine-rich artificial interfaces for durable dual-ion batteries, Shuvajit Ghosh, Surendra K Martha, Journal of Energy Storage (2023) https://doi.org/10.1016/j.est.2023.109491 (I.F. 9.4)
114. 3D Electrode architecture of high surface area carbon-sulfur composite as high energy density cathode for lithium-sulfur battery, J Priscilla Grace, Madhushri Bhar, Sourav Ghosh, Surendra K Martha, Journal of Alloys and Compounds (2023) https://doi.org/10.1016/j.jallcom.2023.172341 (I.F. 6.2)
113. Chemical conversion of parasitic residual lithium compounds into beneficial artificial interface for cycle life improvement of LiNi0.8Mn0.1Co0.1O2 cathodes, Jyotirekha Dutta, Shuvajit Ghosh, Kiran Kumar Garlapati, Surendra K Martha, Journal of Power Sources (2023) https://doi.org/10.1016/j.jpowsour.2023.233717 (I.F. 9.2)
112. Evaluating the feasibility of the spinel-based Li4Ti5O12 and LiNi0.5Mn1.5O4 materials towards a battery supercapacitor hybrid device, Subhajit Bhowmik, Udita Bhattacharjee, Sourav Ghosh, Surendra K Martha, Journal of Energy Storage (2023) https://doi.org/10.1016/j.est.2023.109099 (I.F. 9.4)
111. Ultrathin, flexible and smooth carbon coating extends the cycle life of dual-ion batteries, Shuvajit Ghosh, Udita Bhattacharjee, Jyotirekha Dutta, Kotla Sairam, Rajesh Korla, Surendra K Martha, Journal of Power Sources (2023) https://doi.org/10.1016/j.jpowsour.2023.233585 (I.F. 9.2)
110. Effective upcycling of waste separator and boosting the electrochemical performance of recycled graphite anode for lithium-ion batteries, Madhushri Bhar, Udita Bhattacharjee, Kaliprasad Yalamanchili, Surendra K Martha, Journal of Power Sources (2023) https://doi.org/10.1016/j.jpowsour.2023.233403 (I.F. 9.2)
109. Lead-acid batteries and lead–carbon hybrid systems: A review, Naresh Vangapally, Tirupathi Rao Penki, Yuval Elias, Sadananda Muduli, Satyanarayana Maddukuri, Shalom Luski, Doron Aurbach, Surendra Kumar Martha, Journal of Power Sources (2023) https://doi.org/10.1016/j.jpowsour.2023.233312 (I.F. 9.2)
108. A Dual Carbon Lithium-Ion Capacitor Using Recycled Polymer Separator Derived Carbon Cathode and Graphite Anode from Spent Lithium-Ion Battery, Udita Bhattacharjee, Madhushri Bhar, Shuvajit Ghosh, Subhajit Bhowmik, Surendra K Martha, Journal of The Electrochemical Society (2023) DOI 10.1149/1945-7111/acf887 (I.F. 3.9)
107. Soft Carbon Integration for Prolonging the Cycle Life of LiNi0.5Mn1.5O4 Cathode, Shuvajit Ghosh, Monalisha Mahapatra, Subhajit Bhowmik, Kiran Kumar Garlapati, Surendra K Martha, ACS Applied Energy Materials (2023) https://doi.org/10.1021/acsaem.3c01340 (I.F. 6.4)
106. Unravelling Li-ion Storage Capability of Cobalt Oxide Anode Recovered from Spent LiCoO2 Cathode via Carbothermal Reduction, Madhushri Bhar, Vivek Vishwakarma, Kaliprasad Yalamanchili and Surendra K. Martha, J. Electrochem. Soc (2023) DOI 10.1149/1945-7111/acf480 (I.F. 3.9)
105. A novel and sustainable approach to enhance the Li-ion storage capability of recycled graphite anode from spent lithium-ion batteries" M. Bhar, U. Bhattacharjee, D. Sarma, S. Krishnamurthy, Y. Kaliprasad, A. Mahata, S. K. Martha*, ACS Applied Materials & Interfaces (2023) DOI:10.1021/acsami.3c02272 (I.F. 9.5)
104. A Perspective on Evolution and Journey of Different Types of Lithium-ion Capacitors: Mechanisms, Energy-power Balance, Applicability, and Commercialization, Udita Bhattacharjee, Subhajit Bhowmik, Shuvajit Ghosh, and S. K Martha*, RSC Sustainable Energy & Fuels (2023). DOI: 10.1039/D3SE00269A (I.F.- 5.6)
103. One-Pot Synthesis of Carbon Decorated NiO Nanorods as Cathode Materials for High-Performance Asymmetric Supercapacitors, S. Muduli, S. K. Pati, T. K. Pani, S. K. Martha*, J. Energy Storage 66 (2023) 107339. https://doi.org/10.1016/j.est.2023.107339 (I.F. 9.4)
102. Effect of Varying Carbon Microstructures on the Ion Storage Behavior of Dual Carbon Lithium-ion Capacitor, U Bhattacharjee, A Gautam, S. K. Martha*, Electrochimica Acta, 142353 (2023), https://doi.org/10.1016/j.electacta.2023.142353, (I.F.: 6.6)
101. Designing a Freestanding Electrode of Intermetallic Ni-Sn Alloy Deposit as an Anode for Lithium-Ion and Sodium-Ion Batteries, M Bhar, S Pappu, U Bhattacharjee, BV Sarada, TN Rao. SK Martha*, Journal of The Electrochemical Society, 2023, DOI 10.1149/1945-7111/acc895 (I.F.: 3.9)
100. Designing freestanding electrodes with Fe2O3-based conversion type anode material for sodium-ion batteries, M Bhar, S Ghosh, SK Martha*, Journal of Alloys and Compounds, 169670 (2023), https://doi.org/10.1016/j.jallcom.2023.169670, (I.F.: 6.2)
99. Optimizing anion storage performances of graphite/ non-graphitic carbon composites as cathodes for dual-ion batteries, S Ghosh, MP Nihad, S Muduli, S Bhowmik, SK Martha*, Electrochimica Acta, 441 (2023), 141754, https://doi.org/10.1016/j.electacta.2022.141754 (I.F.: 6.6)
98. Synthesis, crystal structure, optical, thermoelectric, and electrochemical studies of Ba2Cu2.1(1)Ag1.9(1)Se5 Gopabandhu Panigrahi, Subhendu Jana, Sadananda Muduli, Surendra K Martha, Jai Prakash, Solid State Sciences 107115 (2023), https://doi.org/10.1016/j.solidstatesciences.2023.107115 (I.F.: 3.5)
97. Upcycling of spent lithium-ion battery graphite anodes for a dual carbon lithium-ion capacitor, Udita Bhattacharjee, Madhushri Bhar, Subhajit Bhowmik, and Surendra K. Martha*&, Sustainable Energy & Fuels (2023), https://doi.org/10.1039/D3SE00170A (I.F.: 5.6).
96. Easy, Scalable Synthesis of NiMnCo-Oxalate Electrode Material for Supercapacitors from Spent Li-ion Batteries: Power Source for Electrochromic Devices, Samhita P., S. Muduli, Nanaji K., Narasinga Rao Tata, Sarada V. B., S. K. Martha *, Energy and Fuels (accepted 13-10-2022) (2022). https://doi.org/10.1021/acs.energyfuels.2c03006 (I.F.: 5.3).
95. Bio-Waste Derived Honeycomb Structured Activated Carbons as Anode Materials for Lead-Carbon Hybrid Ultracapacitors, S Muduli, R. D. Chakraborty, P. Verma, S. K. Martha*, J. Electrochem. Soc., 169(2022) (9), 090517. https://doi.org/10.1149/1945-7111/ac8eda (I.F.: 3.9).
94. Plasma jet printing induced high-capacity graphite anodes for sustainable recycling of lithium-ion batteries, M, Bhar, A. Dey, S. Ghosh, M. A. van Spronsen V. Selvaraj, Y. Kaliprasad, S. Krishnamurthy*, S. K. Martha**, Carbon 198 (2022) 401–410 https://doi.org/10.1016/j.carbon.2022.07.027 (I.F. 10.9).
93. Enhanced electrochemical performance of O3-type NaNi 0.5 Mn 0.3 Co 0.2 O 2 cathodes for sodium-ion batteries via Al-doping V. Kiran Kumar, S. Ghosh, S. Ghosh, S. Behera, S. Biswas, S. K. Martha*, J. Alloys and Compounds 924 (2022) 166444. https://doi.org/10.1016/j.jallcom.2022.166444 (I.F. 6.2).
92. Effect of Insitu Derived Sulfur Dispersion on Dual Carbon Lithium-Ion Capacitors, U. Bhattacharjee, S. Bhowmik, S. Ghosh, and S. K. Martha*, J. Power Sources 542, 231768 (2022) https://doi.org/10.1016/j.jpowsour.2022.231768 (I.F. 9.2).
91. Electrochemical Compatibility of Graphite Anode from Spent Li-Ion Batteries: Recycled via a Greener and Sustainable Approach, M. Bhar, S. Ghosh, S. Krishnamurthy, Y. Kaliprasad, and S. K. Martha*, ACS Sustainable Chem. Eng. 2022 https://doi.org/10.1021/acssuschemeng.2c00554 (I.F. 9.224).
90. Lead–carbon hybrid ultracapacitors fabricated by using sulfur, nitrogen‑doped reduced graphene oxide as anode material derived from spent lithium‑ion batteries, Sadananda Muduli, Y. Kaliprasad, S. K. Martha*, J. Solid State Electrochem 2022 https://doi.org/10.1007/s10008-022-05188-w (I.F. 2.747).
89. High-performance hybrid supercapacitor with electrochemically exfoliated graphene oxide incorporated NiCo 2 O 4 in aqueous and non-aqueous electrolytes, S Pappu, S Anandan, T. N. Rao, S. K Martha * , S. V. Bulusu, J. Energy Storage 50, 104598 (2022) https://doi.org/10.1016/j.est.2022.104598 (I.F. 8.907).
88. Bio-waste Derived Carbon Nano Onions as an Efficient Electrode Material for Symmetric and Lead-Carbon Hybrid Ultracapacitors, S. Muduli, S. Pati, S. K. Martha *, International Journal of Energy Research (In Press), 2022. https://doi.org/10.1002/er.8123 (I.F. 4.672).
87. Effect of alloying on the electrochemical performance of Sb and Sn deposits as anode material for Lithium-ion and Sodium-ion batteries, L. Elias, M. Bhar, S. Ghosh, S.K. Martha*. Ionics, 28, 2759–2768 (2022). https://doi.org/10.1007/s11581-022-04539-x (I.F.: 2.961).
86. Electrochemically Exfoliated Layered Carbons as Sustainable Anode Materials for Lead Carbon Hybrid Ultracapacitor, S. Muduli, Samahita P., Sarada V Bulusu, Tata N Rao, S. K. Martha*, ChemElectroChem First published: 02 May 2022 https://doi.org/10.1002/celc.202200230 (I.F. 4.782).
85. Influence of Nitrogen on Grain Size-Dependent Sensitisation and Corrosion Resistance of 316L (N) Austenitic Stainless Steels, S Aamani, C.R Das, S.K. Martha, S.K. Albert, B. B. Panigrahi, Transactions of the Indian Institute of Metals, 1-9 (2022). http://doi.org/10.1007/s12666-022-02598-2 (I.F. 1.391).
84. A Review on High-Capacity and High-Voltage Cathodes for Next-Generation Lithium-ion Batteries, S. Ghosh, U. Bhattacharjee, S. Bhowmik, S. K. Martha*, Journal of Energy and Power Technology, 4(1), 2022. doi:10.21926/jept.2201002 (I.F.: NA).
83. Binder and Conductive Diluents Free NaVPO 4 F Based Free-standing Positive Electrodes for Sodium-Ion Batteries, V Kiran Kumar, S Ghosh, N, Vangapally, G Ummethala, SRK Malladi, S. K. Martha*, J. Electrochem. Soc., 169, 010512 (2022). http://doi.org/10.1149/1945-7111/ac47eb (I.F.: 4.386).
82. Boron-doped graphene anode coupled with microporous activated carbon cathode for lithium-ion ultracapacitors, U. Bhattacharjee, S. Bhowmik, S. Ghosh, N. Vangapally, S. K Martha*, Chem Engineering J., 430, 132835 (2022). https://doi.org/10.1016/j.cej.2021.132835 (I.F.:16.744).
81. Charge storage behavior of sugar derived carbon/MnO 2 composite electrode material for high-performance supercapacitors, N Vangapally, K. Kumar, A. Kumar, S. K Martha, J. Alloys and Compounds 893, 162232 (2022). https://doi.org/10.1016/j.jallcom.2021.162232 (I.F.: 6.371).
80. Electrodeposited manganese oxide-based redox mediator driven 2.2 V high energy density aqueous supercapacitor, S Pappu, TN Rao, S. K Martha*, VS Bulusu*, Energy, 122751 (2021). https://doi.org/10.1016/j.energy.2021.122751 (I.F.: 8.85).
79. MoO 3 @ZnO Nanocomposite as an Efficient Anode Material for Supercapacitors: A Cost-Effective Synthesis Approach, S Muduli, SK Pati, S Swain, S. K. Martha, Energy & amp; Fuels 35 (20), 16850-16859, (2021). https://doi.org/10.1021/acs.energyfuels.1c01665 (I.F. 4.654).
78. Titania supported bio-derived activated carbon as an electrode material for high-performance supercapacitors, R Bortamuly, V Naresh, MR Das, VK Kumar, S Muduli, S. K. Martha*, P. Sakia*, Journal of Energy Storage 42, 103144 (1) (2021). https://doi.org/10.1016/j.est.2021.103144 (I.F.: 8.907).
77. Multifunctional Utilization of Pitch Coated Carbon Fibers in Lithium Based Rechargeable Batteries, S. Ghosh, U. Bhattacharjee, S. Patchiyappan, J. Nanda, N.J Dudney, and S. K. Martha*, Advanced Energy Materials, 2100135 (2021). https://doi.org/10.1002/aenm.202100135 (I.F.: 29.698).
76. Polypyrrole-MoS 2 Nanopetals as Efficient Anode Material for Lead-based Hybrid Ultracapacitors, S. Muduli, V. Naresh, S. K. Pati, S. Duary, S. K. Martha*, J. Electrochemical Society,168 (5), 050523 (2021). https://doi.org/10.1149/1945-7111/abfd77 (I.F.: 4.386).
75. WS 2 anode in Na and K-ion battery: Effect of uppercut-off potential on electrochemical performance, S. Ghosh, Z. Qi, H. Wang, S. K. Martha ∗, V. G. Pol *, Electrochimica Acta 383,138339 (2021). https://doi.org/10.1016/j.electacta.2021.138339 (I.F.: 7.336).
74. Pitch-Derived Soft-Carbon-Wrapped NaVPO 4 F Composite as a Potential Cathode Material for Sodium-Ion Batteries, V Kiran Kumar, S Ghosh, S. Biswas, and S. K Martha*, ACS Appl. Energy Mater. (2021). https://doi.org/10.1021/acsaem.1c00410 (I.F.: 6.959).
73. P2-Type Na 0.67 Mn 0. 5 Fe 0.5 O 2 Synthesized by Solution Combustion Method as an Efficient Cathode Material for Sodium-Ion Batteries, V. Kiran Kumar, S. Ghosh, S. Biswas, S. K. Martha*, J. Electrochem. Soc., 168, 030512 (2021). 10.1149/1945-7111/abe985 (I.F.: 4.386).
72. Synergistic effect of LiF coating and carbon fiber electrode on enhanced electrochemical performance of Li 2 MnSiO 4, S.K. Kumar, S Ghosh, M. Bhar, A. K. Kavala, S Patchaiyappan, S. K. Martha*, Electrochimica Acta, 373, 137911 (2021). http://doi.org/10.1016/j.electacta.2021.137911 (I.F.: 7.336).
71. In-situ Formation of mesoporous SnO 2 @ C Nanocomposite Electrode for Supercapacitors, M. U. Rani, V. Naresh, D. Damodar, S. Muduli, S. K Martha*, A. S. Deshpande*, Electrochimica Acta, 365, 137284 (2021). http://doi.org/10.1016/j.electacta.2020.137284 (I.F.: 7.336).
70. Investigating the stable operating voltage for the MnFe 2 O 4 Li-ion battery anode, S. Ghosh, T. Donder, K. Gunnarsson, V. Kiran Kumar, S. K. Martha, P. Svedlindh, V. G. Kessler, G. A. Seisenbaeva, V. G. Pol, Sustainable Energy Fuels, 2021, https://doi.org/10.1039/D1SE00044F (I.F.: 6.813).
69. Effect of nitrogen on grain boundary character distribution in 316 stainless steel, S. Aamani, C.R. Das, S. K. Martha, B.B. Panigrahi, Materials Letters 288, 129387 (2021). http://doi.org/10.1016/j.matlet.2021.129387 (I.F.: 3.574).
68. Microwave aided scalable synthesis of sulfur, nitrogen co-doped few-layered graphene material for high-performance supercapacitors, NK Rotte, V Naresh, S Muduli, V Reddy, VVS Srikanth, S. K. Martha*, Electrochimica Acta, 363, 137209 (2020). https://doi.org/10.1016/j.electacta.2020.137209 (I.F.: 7.336).
67. Cost‐effective Synthesis of Electrodeposited NiCo 2 O 4 Nanosheets with Induced Oxygen Vacancies: A Highly Efficient Electrode Material for Hybrid Supercapacitors, Sarada V. B. Samhita P., K. Nanaji, Sreekanth M., T. N. Rao, S. K Martha*, S. V. Bulusu, Batteries and Supercapacitors (Wiley), 3, 1209-1219 2020). https://doi.org/10.1002/batt.202000121 (I.F.: 6.043).
66. Ultrafast, Dry Microwave Superheating for the Synthesis of SbOx-GNP Hybrid Anode to Investigate the Na-ion Storage compatibility in Ester and Ether Electrolyte, S. Ghosh, Z. Qi, H. Wang, S. K. Martha * and V. Pol, Chem. Commn. 56, 9663-9666 (2020). https://doi.org/10.1039/D0CC02858D (I.F.: 6.065).
65. Binder less-integrated freestanding carbon film derived from pitch as light weight and high-power anode for sodium-ion battery, S. Ghosh, V. Kiran Kumar, S. Krishna Kumar, U. Sunkari, S. Biswas, S. K. Martha, Electrochim. Acta 353,136566 (2020). http://doi.org/10.1016/j.electacta.2020.136566 (I.F.: 7.336).
64. Dipotassium terephthalate as promising potassium storing anode with DFT calculations, S. Ghosh, M. A. Makeev, M. L. Macaggi, Z. Qi, H. Wang, N. N. Rajput, S. K. Martha*, V. G. Pol*, Materials Today Energy 17, 100454, (2020). http://doi.org/10.1016/j.mtener.2020.100454 (I.F.: 9.257).
63. Practical Realization of O3-Type NaNi 0.5 Mn 0.3 Co 0.2 O 2 Cathodes for Sodium-Ion Batteries V. Kiran Kumar, S. Ghosh, S. Biswas, S. K. Martha*, J. Electrochem. Soc. 167, 080531 (2020). https://doi.org/10.1149/1945-7111/ab8ed5 (I.F.: 4.386).
62. Rapid Upcycling of Waste Polyethylene Terephthalate (PET) to Energy Storing Disodium Terephthalate Flowers with DFT Calculations, S. Ghosh; M. Makeev; Z. Qi; H. Wang; N. N. Rajput; S. K Martha*; V. G. Pol, ACS Sustainable Chemistry & Engineering Pub Date: 2020-03-15, https://doi.org/10.1021/acssuschemeng.9b07684 (I.F.: 9.224).
61. Boron, Nitrogen-Doped Porous Carbon Derived from Biowaste Orange Peel as Negative Electrode Material for Lead-Carbon Hybrid Ultracapacitors, Sadananda Muduli, Vangapally Naresh, Surendra K. Martha*, J. Electrochem. Soc. 167, 090512 (2020). https://doi.org/10.1149/1945-7111/ab829f (I.F.: 4.386).
60. Nitrogen phosphorous derived carbons from Peltophorum pterocarpum leaves as anodes for lead-carbon hybrid ultracapacitors, S. Muduli, N. K. Rotte, V. Naresh, S. K. Martha*, J. Energy Storage, 29, 101330 (2020). https://doi.org/10.1016/j.est.2020.101330 (I.F.: 8.907).
59. A facile approach of adsorption of acid blue 9 on aluminum silicate-coated fuller's earth- equilibrium and kinetics studies, Y Subbareddy, RN Kumar, BK Sudhakar, KR Reddy, SK Martha, K.Kaviyarasud, Surfaces and Interfaces, 19 (2020)100503. https://doi.org/10.1016/j.surfin.2020.100503 (I.F.: 6.137).
58. Electrochemical Studies on Kinetics and Diffusion of Li-Ions in MnO 2 Electrodes, D. Narsimulu, S. Ghosh, M. Bhar, S. K. Martha*, J. Electrochem. Soc., 166 (12) A2629- A2635 (2019). https://doi.org/10.1149/2.1161912jes (I.F.: 4.386).
57. Hard carbon derived from sepals of Palmyra palm fruit calyx as an anode for sodium-ion batteries, D. Damodar, S. Ghosh, M. Usha Rani, S. K. Martha, A. S. Deshpande, J. Power Sources, 438 (2019) 227008. https://doi.org/10.1016/j.jpowsour.2019.227008 (I.F.: 9.794).
56. An Insight of Sodium Ion Storage, Diffusivity into TiO 2 Nanoparticles and Practical Realisation to Sodium-ion Full cell, S. Ghosh, V. Kiran Kumar, S. Krishna Kumar, S. Biswas, S. K. Martha*, Electrochim. Acta, 316, 69-78 (2019). https://doi.org/10.1016/j.electacta.2019.05.109 (I.F.: 7.336).
55. Boron doped graphene nanosheets as negative electrode additive for high-performance lead-acid batteries and ultracapacitors, V. Naresh, U. Bhattacharjee, S. K. Martha*, J. Alloys and Compounds, 797 (15) 595-605, (2019). https://doi.org/10.1016/j.jallcom.2019.04.311 (I.F.: 6.371).
54. Carbon Coated SnO 2 as a Negative Electrode Additive for High-Performance Lead Acid Batteries and Supercapacitors, V. Naresh, S. K. Martha*, J. Electrochem. Soc. 166 (4) A551-A558 2019) https://doi.org/10.1149/2.0291904jes (I.F.: 4.386).
53. PEDOT coated Lead Negative Plates for Hybrid Energy Storage Systems, Naresh V, Lijju Elias, S. K. Martha*, Electrochim. Acta, 30, 183-191 (2019). https://doi.org/10.1016/j.electacta.2019.01.159 (I.F.: 7.336).
52. Corrosion Resistant Polypyrrole Coated Lead-Alloy Positive Grids for Advanced Lead Acid Batteries, Naresh V, Lijju Elias, S. A. Gaffoor, S. K. Martha*, J. Electrochem. Soc., 166 (2) A74-A81 (2019). https://doi.org/10.1149/2.0211902jes (I.F.: 4.386).
51. Titanium dioxide-reduced graphene oxide hybrid as negative electrode additive for high-performance lead-acid batteries, Naresh V, S. Jindal, S. A. Gaffoor, S. K. Martha*, J. Energy Storage, 20, 204–212 (2018). https://doi.org/10.1016/j.est.2018.09.015 (I.F.: 8.907).
50. Nanostructured Silicon−Carbon 3D Electrode Architectures for High-Performance Lithium-Ion Batteries, S. Krishna Kumar, Sourav Ghosh, S. K. Malladi, Jagjit Nanda, S. K. Martha*, ACS Omega, 3, 9598−9606 (2018). https://doi.org/10.1021/acsomega.8b00924 (I.F.: 4.132).
49. Nitrogen-doped Graphene-like Carbon Nanosheets from Commercial Glue: Morphology, Phase Evolution and Li-ion Battery Performance, D. Devarakonda, S. K. Kumar, S. K. Martha and A. S. Deshpande, Dalton Trans., 47, 2018, DOI: 10.1039/C8DT01787E. (I.F.: 4.569).
48. Binder and Conductive Additive Free Silicon Electrode Architectures for Advanced Lithium- Ion Batteries, S. Krishna Kumar, Rini Choudhury, S. K. Martha*, J. Energy Storage, 17 417-422 (2018). https://doi.org/10.1016/j.est.2018.04.002 (I.F.: 8.907).
47. Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2 (LMR-NMC)-Carbon Coated-LiMnPO4 Blended Electrodes for High-Performance Lithium Ion Batteries, S. Krishna Kumar, S. K. Martha*, J. Electrochem. Soc. 165 (3) A463-A468 (2018). https://doi.org/10.1149/2.0221803jes (I.F.: 4.386).
46. Na2EDTA chelating agent as an electrolyte additive for high-performance lead-acid Batteries, N. Vangapally, S.A. S.A. Gaffoor, S. K. Martha*, Electrochim. Acta, 258 (2017).1493-1501. https://doi.org/10.1016/j.electacta.2017.12.028 (I.F.: 7.336).
45. Synergistic effect of 3D electrode architecture and fluorine doping of Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2 for high energy density lithium-ion batteries, S. Krishna Kumar, S. Ghosh, P. Ghoshal, S. K. Martha*, J. Power Sources, 356, 115-123 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.077 (I.F.: 9.794).
44. Synergistic effect of magnesium and fluorine doping on the electrochemical performance of lithium- manganese rich (LMR)-based Ni-Mn-Co-oxide (NMC) cathodes for lithium-ion batteries, S. Krishna Kumar, S. Ghosh, S. K. Martha*, Ionics 23:1655–1662 ((2017). https://doi.org/10.1007/s11581-017-2018-9 (I.F.: 2.961).
43. State of the Art and Future Research Needs for Multiscale Analysis of Li-Ion Cells, K. Shah, N. Balsara, S. Banerjee, M. Chintapalli, A. P. Cocco, W. K. S. Chiu, I. Lahiri, S. K. Martha, A. Mistry et al. J. Electrochem. Energy Conversion and Storage, 14,020801- 1 (2017). All are equal contributing authors. https://doi.org/10.1115/1.4036456 (I.F.: 2.323).
42. Probing Multiscale Transport and Inhomogeneity in a Lithium-Ion Pouch Cell Using In Situ Neutron Methods, H. Zhou, K. An, S. Allu, S. Pannala, J. Li, H. Z. Bilheux, S. K. Martha, and Jagjit Nanda, ACS Energy Lett., 1, 981 (2016). https://doi.org/10.1021/acsenergylett.6b00353 (I.F.: 23.991).
41. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects, J. Nanda, S. K. Martha, K. Ramki, Pramana –J. Phys., 84, 1073 (2015). https://doi.org/10.1007/s12043-015-1006-8 (I.F.: 2.699).
40. Raman Microscopy of Lithium-Manganese-Rich Transition Metal Oxide Cathodes, R. E., Ruther, A. F. Callender, H. Zhou, S. K. Martha, J. Nanda, J. Electrochem. Soc. 162A1 (2015). https://doi.org/10.1149/2.0361501jes (I.F.: 4.386).
39. Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling, F. Yang, Y. Liu, S. K. Martha, Z. Wu, J. C. Andrews, G. E. Ice, P. Pianetta, J. Nanda, Nano Lett., 14, 4334 (2014). https://doi.org/10.1021/nl502090z (I.F.: 12.262).
38. Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in Lignin-derived Carbon Fibers for Lithium-Ion Batteries, O. Rios, S. K. Martha, M.A. McGuire, W. Tenhaeff, K. More, C. Daniel, J. Nanda, Energy Techn., 2, 773 (2014). https://doi.org/10.1002/ente.201402049 (I.F.: 4.149).
37. Electrode architectures for high capacity multivalent conversion compounds: iron (ii and iii) fluoride, S. K. Martha, J. Nanda, N. J. Dudney, H. Zhou, J. C. Idrobo, N. J. Dudney,S. Pannala, J. Wang & P. V. Braun, RSC Adv., 4, 6730 (2014). DOI: 10.1039/C3RA47266C (I.F.: 4.036).
36. Role of Surface Functionality in the Electrochemical Performance of Silicon Nanowire Anodes for Rechargeable Lithium Batteries, H. Zhu, J. Nanda $, S. K. Martha, R. R. Unocic, H. M. Meyer, Y. Sahoo, P. Miskiewicz, and T. F. Albrecht, ACS Appl. Mater. Interfaces, 6, 7607 (2014). $ Guide /Mentor. https://doi.org/10.1021/am500855a (I.F.: 10.383).
35. Thermophysical Properties of LiFePO 4 Cathodes with Carbonized Pitch Coatings and Organic Binders: Experiments and First-Principles Modeling, J. Nanda, S. K. Martha, W. D. Porter, H. Wang, N. J. Dudney, M. D. Radin and D. J. Siegel, J. Power Sources, 251, 8 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.022 (I.F.: 9.794).
34. Formation of Iron Oxyfluoride Phase on the Surface of Nano-Fe 3 O 4 Conversion Compound for Electrochemical Energy Storage, H. Zhou, J. Nanda, S. K. Martha, J. Adcock, J. C. Idrobo, L. Baggetto, G. M. Veith, S. Dai, S. Pannala, and N. J. Dudney, J. Phys. Chem. Lett., 4, 3798 (2013) https://doi.org/10.1021/jz402017h (I.F.: 6.888).
33. An Artificial Solid Electrolyte Interphase Enables the Use of a LiNi 0. 5 Mn 1. 5 O 4 5 V Cathode with Conventional Electrolytes, J. Li, L. Baggetto, S. K. Martha, G. M. Veith, J. Nanda, C. Liang, N. J. Dudney, Adv. Energy Mater., 3, 1275 (2013). https://doi.org/10.1002/aenm201300378 (I.F.: 29.698).
32. Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li 1.2 Mn 0.525 Ni 0.175 Co 0.1 O 2, S. K. Martha, J. Nanda, Y. Kim, R. Unocic, S. Pannala, N. J. Dudney, J. Mater. Chem. A., 1, 5587 (2013). https://doi.org/10.1039/c3ta10586e (I.F.: 14.511).
31. A Perspective on Coatings to Stabilize High-Voltage Cathodes: LiMn 1.5 Ni 0.5 O 4 with Sub- Nanometer Lipon Cycled with LiPF 6 Electrolyte, Y. Kim, N. J. Dudney, M. Chi, S. K. Martha, J. Nanda, G. Veith, C. Liang, J. Electrochem. Soc., 160, A3113 (2013). https://doi.org/10.1149/2.017305jes (I.F.: 4.386).
30. Electrochemical stability of carbon fiber current collectors compared to metal foil current collectors for lithium batteries, S. K. Martha*, N. J. Dudney, J. O. Kiggins, J. Nanda, J. Electrochem. Soc. 159, A1652, 2012. https://doi.org/10.1149/2.041210jes (I.F.: 4.386).
29. High cyclability of ionic liquid-produced TiO 2 nanotube arrays as an anode material for lithium-ion batteries, H. Li, S. K. Martha, R. R. Unocic, H. Luo, S Dai, J. Qu, J. Power Sources, 218, 88-92 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.096 (I.F.: 9.794).
28. Surface studies of high voltage Li-rich composition: Li 1.2 Mn 0.525 Ni 0.175 Co 0.1 O 2, S. K. Martha, J. Nanda, G. M. Veith, N. J. Dudney, J. Power Sources, 216, 179-186 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.049 (I.F.: 9.794).
27. Self-aligned Cu-Si core-shell nanowire array as a high-performance anode for Li-ion batteries, J. Qu, H. Li, J. Henry, S. K. Martha, N. J. Dudney, T.M. Besmann, S. Dai, M. Lance, J. Power Sources, 198 (15) 312–317(2012). https://doi.org/10.1016/j.jpowsour.2011.10.004 (I.F.: 9.794).
26. Electrochemical and rate performance studies of high voltage lithium rich composition: Li 1.2 Mn 0.525 Ni 0.175 Co 0.1 O 2, S. K. Martha*, J. Nanda, G. M. Veith, N. J. Dudney, J. Power Sources, 199 (1) 220–226 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.019 (I.F.: 9.794).
25. On the thermal stability of olivine cathodes in standard electrolyte systems, S. K. Martha*, O. Haik, E. Zinigrad, I. Exnar, T. Drezen, J. H. Miners, D. Aurbach, J. Electrochem. Soc. 158 (10) (2011) A1115-A1122. https://doi.org/10.1149/1.3622849 (I.F.: 4.316).
24. Advanced lithium battery cathodes using dispersed carbon fibers as current collector, S. K. Martha*, J. O. Kiggans, J. Nanda, N. J. Dudney, J. Electrochem. Soc. 158 (9) (2011) A1060-A1066. https://doi.org/10.1149/1.3611436 (I.F.: 4.316).
23. Li 4Ti 5O 12 / LiMnPO 4 lithium-ion battery systems for load leveling applications, S. K. Martha, O. Haik, V. Borgel, E. Zinigrad, I. Exnar, T. Drezen, J. H. Miners, D. Aurbach J. Electrochem. Soc. 158(2011) A790-A797. https://doi.org/10.1149/1.3585837 (I.F.: 4.316).
22. On the electrochemical behavior of aluminum electrodes in non-aqueous electrolyte solutions of lithium salts, B. Markovsky, F. S. Amalraj, H. E. Gottlieb, Y. Gofer, S. K. Martha, D. Aurbach, J. Electrochem. Soc. 157 (2010) A423-A429. https://doi.org/10.1149/1.3294774 (I.F.: 4.316).
21. LiMn 0.8 Fe 0.2 PO 4 : an advanced cathode material for rechargeable lithium batteries, S. K. Martha, J. Grinbat, O. Haik, E. Zinigrad, T. Drezen, J. H. Miners, I. Exnar, A. Kay, B. Markovsky, D. Aurbach, Angew. Chem. Int. Ed., 48 (2009) 8559 –8563. https://doi.org/10.1002/anie.200903587 (I.F.: 16.82).
20. Characterizations of self-combustion reactions (SCR) for the production of nanomaterials used as advanced cathodes in Li-ion batteries, O. Haik, S. K. Martha, H. Sclar, Z. S. Fromovich, E. Zinigrad, B. Markovsky, D. Kovacheva, N. Saliyski, D. Aurbach, Thermochim. Acta, 493 (2009) 96-104. https://doi.org/10.1016/j.tca.2009.04.008 (I.F.: 3.115).
19. LiMnPO 4 as an advanced cathode material for rechargeable lithium batteries, S. K. Martha, B. Markovsky, J. Grinblat, Y. Gofer, O. Haik, E. Zinigrad, D. Aurbach, T. Drezen, D. Wang, G. Denghenghi, I. Exnar, J. Electrochem. Soc., 156 (2009) A541-A552. https://doi.org/10.1149/1.3125765 (I.F.: 4.316).
18. A simplified mathematical model for effects of freezing on low-temperature performance of the lead-acid battery, K. S. Gandhi, A. K. Shukla, S. K. Martha, S. A. Gaffoor, J. Electrochem. Soc., 156 (2009) A238-A245. https://doi.org/10.1149/1.3068391 (I.F.: 4.316).
17. A short review on surface chemical aspects of Li batteries: A key for a good performance, S. K. Martha, E. Markevich, V. Burgel, G. Salitra, E. Zinigrad, B. Markovsky, H. Sclar, Z. Pramovich , O. Haik, D. Aurbach et al., J. Power Sources, 189 (2009) 288-296. https://doi.org/10.1016/j.jpowsour.2008.09.084 (I.F.: 9.794).
16. A comparative study of electrodes comprising nanometric and submicron particles of LiNi 0.5 Mn 0.5 O 2 , LiNi 0.33 Mn 0.33 Co 0.33 O 2 , and LiNi 0.4 Mn 0.4 Co 0.2 O 2 layered compounds, S. K. Martha, H. Sclar, Z. Samuk-Fromovich, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. Markovsky, D. Aurbach, J. Power Sources, 189 (2009) 248-255. https://doi.org/10.1016/j.jpowsour.2008.09.090 (I.F.: 9.794).
15. Comparative study of lead-acid batteries for photovoltaic stand-alone lighting systems, B. Hariprakash, S. K. Martha, S. Ambalavanan, S. A. Gaffoor, A. K. Shukla, J. Appl. Electrochem., 38 (2008) 77-82. https://doi.org/10.1007/s10800-007-9403-4 (I.F.: 2.8).
14. Lead-acid cells with polyaniline coated negative plates, S. K. Martha, B. Hariprakash, S. A. Gaffoor and A. K. Shukla, J. Appl. Electrochem., 36 (2006) 711-722. https://doi.org/10.1007/s10800-006-9127-x (I.F.: 2.8).
13. A low-cost lead-acid battery with high specific-energy, S. K. Martha, B. Hariprakash, S. A. Gaffoor, D. C. Trivedi and A. K. Shukla, J. Chem. Sci., 118 (2006) 93-98. https://doi.org/10.1007/BF02708770 (I.F.: 1.573).
12. High specific energy lead-acid batteries through organic metals, S. K. Martha, B. Hariprakash, S. A. Gaffoor, D.C. Trivedi, and A. K. Shukla, Electrochem. Solid-State Lett., 8 (2005) A353-A356. https://doi.org/10.1149/1.1921133 (I.F.: 2.321).
11. Assembly and performance of hybrid-VRLA cells and batteries, S. K. Martha*, B. Hariprakash, S. A. Gaffoor, S. Ambalavanan and A. K. Shukla, J. Power Sources, 144 (2005) 560-567. https://doi.org/10.1016/j.jpowsour.2004.11.016 (I.F.: 9.794).
10. A sealed, starved-electrolyte nickel-iron battery, B. Hariprakash, S. K. Martha, M. S. Hegde and A. K. Shukla, J. Appl. Electrochem., 35 (2005) 27-32. https://doi.org/10.1007/s10800-004-2052-y (I.F.: 2.8).
9. On-line monitoring of lead-acid batteries by galvanostatic non-destructive technique, B. Hariprakash, S. K. Martha, A. Jaikumar and A. K. Shukla, J. Power Sources, 137 (2004) 128-133. https://doi.org/10.1016/j.jpowsour.2004.05.045 (I.F.: 9.794).
8. Improved lead-acid cells employing tin oxide coated Dynel fibres with positive active material, B. Hariprakash, A. U. Mane, S. K. Martha, S. A. Gaffoor, S. A. Shivashankar and A. K. Shukla, J. Appl. Electrochem., 34 (2004) 1039-1044. https://doi.org/10.1023/B:JACH.0000042669.25031.dd (I.F.: 2.8).
7. A low-cost, high energy-density lead-acid battery, B. Hariprakash, A. U. Mane, S. K. Martha, S. A. Gaffoor, S. A. Shivashankar and A. K. Shukla, Electrochem. Solid-State Lett., 7 (2004) A66-A69. https://doi.org/10.1149/1.1645752 (I.F.: 2.321).
6. Monitoring sealed automotive lead-acid batteries by sparse-impedance spectroscopy, B. Hariprakash, S. K. Martha and A. K. Shukla, Proc. Indian Acad. Sci. (Chem. Sci.) 115 (2003) 465-472. https://doi.org/10.1007/BF02708238 (I.F.: 1.406).
5. Performance characteristics of a gelled-electrolyte valve-regulated lead-acid battery, S. K. Martha, B. Hariprakash, A. K. Shukla and S. A. Gaffoor, Bull. Mater. Sci., 26 (2003) 465-469. https://doi.org/10.1007/BF02707342 (I.F.: 1.841).
4. Galvanostatic non-destructive characterization of alkaline silver-zinc cells with varying capacities, B. Hariprakash, S. K. Martha and A. K. Shukla, J. Power Sources, 117 (2003) 242-248. https://doi.org/10.1016/S0378-7753(03)00163-0 (I.F.: 9.794).
3. Effect of copper additive on Zr 0.9 Ti 0.1 V 0.2 Mn 0.6 Cr 0.05 Co 0.05 Ni 1.2 alloy anode for nickel-metal hydride batteries, B. Hariprakash, S. K. Martha and A. K. Shukla, J. Appl. Electrochem., 33 (2003) 497-504. https://doi.org/10.1023/A:1024482806412 (I.F.: 2.8).
2. Electrochemical Power Sources, A. K. Shukla, and S. K. Martha, Resonance, 6 (2001) 52-63. https://doi.org/10.1007/BF02835270 (I.F.: 0.21).
1. Ceria-supported platinum as hydrogen-oxygen recombinant catalyst for sealed lead-acid batteries,B. Hariprakash, P. Bera, S. K. Martha, S. A. Gaffoor, M. S. Hegde and A. K. Shukla, Electrochem. Solid-State Lett., 4 (2001) A23-A26. https://doi.org/10.1149/1.1346537 (I.F.: 2.321).