Otsuka K, Sakashita A, Maezawa S, Schultz RM, & Namekawa SH. 2025, KRAB zinc-finger proteins regulate endogenous retroviruses to sculpt germline transcriptomes and genome evolution, Genome Res., vol. 35, no. 3, pp. 417–431.
https://doi.org/10.1101/gr.279924.124
Sakashita A, Ooga M, Otsuka K, Maezawa S, Takeuchi C, Wakayama S, Wakayama T, & Namekawa SH. 2023, Polycomb protein SCML2 mediates paternal epigenetic inheritance through sperm chromatin, Nucleic Acids Res., vol. 51, no. 13, pp. 6668–6683.
https://doi.org/10.1093/nar/gkad479
Notomi Y, Kazawa T, Maezawa S, Kanzaki R, & Haupt SS. 2022, Use of Visual Information by Ant Species Occurring in Similar Urban Anthropogenic Environments, Zool. Sci., vol. 39, no. 6, pp. 529–544. https://doi.org/10.2108/zs220035
Sato Y, Tsuyusaki M, Takahashi-Iwanaga H, Fujisawa R, Masamune A, Hamada S, Matsumoto R, Tanaka Y, Kakuta Y, Yamaguchi-Kabata Y, Furuse T, Wakana S, Shimura T, Kobayashi R, Shinoda Y, Goitsuka R, Maezawa S, Sadakata T, Sano Y, & Furuichi T. 2022, Loss of CAPS2/Cadps2 leads to exocrine pancreatic cell injury and intracellular accumulation of secretory granules in mice, Front. Mol. Biosci., vol. 9, pp. 1040237. https://doi.org/10.3389/fmolb.2022.1040237
Sakashita A, Takeuchi C, Maezawa S, & Namekawa SH. 2022, Bioinformatics Pipelines for Identification of Super-Enhancers and 3D Chromatin Contacts, Methods Mol. Biol., vol. 2577, pp. 123–146. https://link.springer.com/protocol/10.1007/978-1-0716-2724-2_9
Tatara M, Ikeda T, Namekawa SH, & Maezawa S. 2022, ATAC-Seq Analysis of Accessible Chromatin: From Experimental Steps to Data Analysis, Methods Mol. Biol., vol. 2577, pp. 65–81.
https://link.springer.com/protocol/10.1007/978-1-0716-2724-2_5
Hu M, Yeh YH, Munakata Y, Abe H, Sakashita A, Maezawa S, Vidal M, Koseki H, Hunter N, Schultz RM, & Namekawa SH. 2022, PRC1-mediated epigenetic programming is required to generate the ovarian reserve, Nat. Commun., vol. 13, no. 1, pp. 4510.
https://doi.org/10.1038/s41467-022-31759-6
Alavattam KG, Maezawa S, Andreassen PR, & Namekawa SH. 2021, Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis, Cell Mol. Life Sci., vol. 79, no. 1, pp. 18. https://doi.org/10.1007/s00018-021-04075-3
Yeh Y H, Hu M, Nakagawa T, Sakashita A, Yoshida S, Maezawa S, & Namekawa SH. 2021, Isolation of murine spermatogenic cells using a violet-excited cell-permeable DNA binding dye, J Vis Exp., vol. 2021, no. 167, pp. 1–13.
https://doi.org/10.3791/61666
Sakashita A, Maezawa S, Takahashi K, Alavattam KG, Yukawa M, Hu YC, Kojima S, Parrish NF, Barski A, Pavlicev M & Namekawa SH. 2020, Endogenous retroviruses drive species-specific germline transcriptomes in mammals, Nature Structural and Molecular Biology, vol. 27, no. 10, pp. 967-977. https://doi.org/10.1038/s41594-020-0487-4
Maezawa S, Sakashita A, Yukawa M, Chen X, Takahashi K, Alavattam KG, Nakata I, Weirauch MT, Barski A & Namekawa SH. 2020, Super-enhancer switching drives a burst in gene expression at the mitosis-to-meiosis transition, Nature Structural & Molecular Biology, vol. 27, no. 10, pp. 978–988.
https://doi.org/10.1038/s41594-020-0488-3
Maezawa S, Alavattam KG, Tatara M, Nagai R, Barski A, & Namekawa SH. A rapidly evolved domain, the SCML2 DNA-binding (SDB) repeats, contributes to chromatin binding of mouse SCML2. Biol Reprod. 2019 Feb 1;100(2):409-419.
https://doi.org/10.1093/biolre/ioy181
Alavattam KG, Maezawa S, Sakashita A, Khoury H, Barski A, Kaplan N & Namekawa SH. 2019, Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development, Nature Structural and Molecular Biology, vol. 26, no. 3, pp. 175-184.
https://doi.org/10.1038/s41594-019-0189-y
Maezawa S, Hasegawa K, Alavattam K G, Funakoshi M, Sato T, Barski A, & Namekawa S H. 2018, SCML2 promotes heterochromatin organization in late spermatogenesis, Journal of Cell Science, vol. 131, no. 17, jcs217125.
https://doi.org/10.1242/jcs.217125
Maezawa S, Hasegawa K, Yukawa M, Kubo N, Sakashita A, Alavattam KG, Sin H, Kartashov AV, Sasaki H, Barski A, & Namekawa SH. Polycomb protein SCML2 facilitates H3K27me3 to establish bivalent domains in the male germline. PNAS. 2018 May 8;115(19):4957-4962.
https://doi.org/10.1073/pnas.1804512115
Maezawa S, Yukawa Masashi, Alavattam Kris G, Barski Artem, & Namekawa SH. 2018, Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis, Nucleic Acids Research, vol. 46, no. 2, pp. 593–608.
https://doi.org/10.1093/nar/gkx1052
Adams SR, Maezawa S, Alavattam KG, Abe H, Sakashita A, Shroder M, Broering TJ, Sroga Rios J, Thomas MA, Lin X, Price CM, Barski A, Andreassen PR & Namekawa SH. 2018, RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes, PLoS Genetics, vol. 14, no. 2, e1007233.
https://doi.org/10.1371/journal.pgen.1007233
Maezawa S, Hasegawa K, Yukawa M, Sakashita A, Alavattam KG, Andreassen PR, Vidal M, Koseki H, Barski A & Namekawa SH. 2017, Polycomb directs timely activation of germline genes in spermatogenesis, Genes & Dev., vol. 31, no. 16, pp. 1693–1703.
https://doi.org/10.1101/gad.302000.117
Maezawa S, Nakano S, Kuniya T, Koiwai O & Koiwai K. 2016, Double-strand break repair based on short-homology regions is suppressed under terminal deoxynucleotidyltransferase expression, as revealed by a novel vector system for analysing DNA repair by nonhomologous end joining, FEBS Open Bio, vol. 6, no. 1, pp. 16–23.
https://doi.org/10.1002/2211-5463.12001
Alavattam KG, Kato Y, Sin HS, Maezawa S, Kowalski IJ, Zhang F, Pang Q, Andreassen PR & Namekawa SH. 2016, Elucidation of the Fanconi anemia protein network in meiosis and its function in the regulation of histone modifications, Cell Rep., vol. 17, no. 4, pp. 1141–1157.
https://doi.org/10.1016/j.celrep.2016.09.073
Hasegawa K, Sin HS, Maezawa S, Broering TJ, Kartashov AV, Alavattam KG, Ichijima Y, Zhang F, Bacon WC, Greis KD, Andreassen PR, Barski A & Namekawa SH. 2015, SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination, Dev. Cell, vol. 32, no. 5, pp. 574–588. https://doi.org/10.1016/j.devcel.2015.01.014
Suzuki M, Hirata M, Takagi M, Watanabe T, Iguchi T, Koiwai K, Maezawa S & Koiwai O. 2014, Truncated UDP-glucuronosyltransferase (UGT) from a Crigler-Najjar syndrome type II patient colocalizes with intact UGT in the endoplasmic reticulum, Journal of Human Genetics, vol. 59, no. 3, pp. 158–162. https://doi.org/10.1038/jhg.2013.138
Matsumoto T, Go K, Hyodo M, Koiwai K, Maezawa S, Hayano T, Suzuki M & Koiwai O. 2012, BRCT domain of DNA polymerase μ has DNA-binding activity and promotes the DNA polymerization activity, Genes to Cells, vol. 17, no. 9, pp. 790–806.
https://doi.org/10.1111/j.1365-2443.2012.01628.x
Maezawa S, Fukushima R, Matsushita T, Kato T, Takagaki Y, Nishiyama Y, Ando S, Matsumoto T, Kouda K, Hayano T, Suzuki M, Koiwai K & Koiwai O. 2012, Ubiquitylation of terminal deoxynucleotidyltransferase inhibits its activity, PloS One, vol. 7, no. 7, e39511.
https://doi.org/10.1371/journal.pone.0039511
Mizushina Y, Takeuchi T, Kuriyama I, Takahashi Y, Maezawa S, Matsumoto T, Koiwai O, Sugawara F & Yoshida H. 2011, DNA polymerase β specific inhibitors, a loliolide derivative and pubinernoid A, isolated from the brown algae Laminaria sp., Letters in Drug Design and Discovery, vol. 8, no. 8, pp. 671–677. https://doi.org/10.2174/157018011796576024
Koiwai K, Noma S, Takahashi Y, Hayano T, Maezawa S, Kouda K, Matsumoto T, Suzuki M, Furuichi M & Koiwai O. 2011, TdIF2 is a nucleolar protein that promotes rRNA gene promoter activity, Genes to Cells, vol. 16, no. 7, pp. 748–764.
https://doi.org/10.1111/j.1365-2443.2011.01524.x
Hayano T, Koiwai K, Ishii H, Maezawa S, Kouda K, Motoyama T, Kubota T & Koiwai O. 2009, TdT interacting factor 1 enhances TdT ubiquitylation through recruitment of BPOZ-2 into nucleus from cytoplasm, Genes to Cells, vol. 14, no. 12, pp. 1415–1427.
https://doi.org/10.1111/j.1365-2443.2009.01358.x
Maezawa S, Hayano T, Koiwai K, Fukushima R, Kouda K, Kubota T & Koiwai O. 2008, Bood POZ containing gene type 2 is a human counterpart of yeast Btb3p and promotes the degradation of terminal deoxynucleotidyltransferase, Genes to Cells, vol. 13, no. 5, pp. 439–457.
https://doi.org/10.1111/j.1365-2443.2008.01179.x
Koiwai K, Maezawa S, Hayano T, Iitsuka M & Koiwai O. 2008, BPOZ-2 directly binds to eEF1A1 to promote eEF1A1 ubiquitylation and degradation and prevent translation, Genes to Cells, vol. 13, no. 6, pp. 593–607.
https://doi.org/10.1111/j.1365-2443.2008.01191.x
Akizawa E, Koiwai K, Hayano T, Maezawa S, Matsushita T & Koiwai O. 2008, Direct binding of ligandin to uridine 5′-diphosphate glucuronosyltransferase 1A1, Hepatology Research, vol. 38, no. 4, pp. 402–409.
https://doi.org/10.1111/j.1872-034X.2007.00285.x
Kubota T, Maezawa S, Koiwai K, Hayano T & Koiwai O. 2007, Identification of functional domains in TdIF1 and its inhibitory mechanism for TdT activity, Genes to Cells, vol. 12, no. 8, pp. 941-959. https://doi.org/10.1111/j.1365-2443.2007.01105.x
前澤創, 髙橋一生, 行川賢 三次元クロマチン構造を捉えるーHi-C法〔プロトコール〕. 実験医学 (別冊), 120-135 (2020)