PAPER SUMMARIES

2.Samaco, R. C. et al. (2008). A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum. Mol. Genet. 17, 1718–1727.

3. Garg, S. K. et al.(2013). Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J. Neurosci. Off. J. Soc. Neurosci. 33, 13612–13620.

4. Carrette, L. L. G., Blum, R., Ma, W., Kelleher, R. J. & Lee, J. T. (2018). Tsix-Mecp2 female mouse model for Rett syndrome reveals that low-level MECP2 expression extends life and improves neuromotor function. Proc. Natl. Acad. Sci. U. S. A. 115, 8185–8190.

5. Vashi, N. & Justice, M. J. (2019). Treating Rett syndrome: From mouse models to human therapies. Mamm. Genome 30, 90–110.

6. Invernizzi, R., Bramante, M. & Samanin, R. (1996). Role of 5-HT1A receptors in the effects of acute chronic fluoxetine on extracellular serotonin in the frontal cortex. Pharmacol. Biochem. Behav. 54, 143–147.

7. Maya Vetencourt, J. F. et al. (2008). The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320, 385–388.

8. Nicholas L.AdkinsN.L. Adkins and Philippe T.GeorgelP.T. Georgel. (2011). MeCP2: structure and function. Biochemistry and Cell Biology. 89(1): 1-11.

9. Tillotson, R., Selfridge, J., Koerner, M. et al. (2017). Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature 550, 398–401.

10. Glaze DG. (2005). Neurophysiology of Rett Syndrome. Journal of Child Neurology 20(9), 740-746. 

11. Villani, C., Sacchetti, G., Carli, M., & Invernizzi, R. W. (2020). Fluoxetine rescues rotarod motor deficits in Mecp2 heterozygous mouse model of Rett syndrome via brain serotonin. Neuropharmacology, 176, 108221. 

12. Zhao, F., Zhang, H., Wang, P., Cui, W., Xu, K., Chen, D., Hu, M., Li, Z., Geng, X., & Wei, S. (2022). Oxytocin and serotonin in the modulation of neural function: Neurobiological underpinnings of autism-related behavior. Frontiers in neuroscience, 16, 919890. 

13. Villani, C., Carli, M., Castaldo, A. M., Sacchetti, G., & Invernizzi, R. W. (2021). Fluoxetine increases brain MeCP2 immuno-positive cells in a female Mecp2 heterozygous mouse model of Rett syndrome through endogenous serotonin. Scientific reports, 11(1), 14690.

14. Napoletani, G., Vigli, D., Cosentino, L., Grieco, M., Talamo, M. C., Lacivita, E., Leopoldo, M., Laviola, G., Fuso, A., d'Erme, M., & De Filippis, B. (2021). Stimulation of the Serotonin Receptor 7 Restores Brain Histone H3 Acetylation and MeCP2 Corepressor Protein Levels in a Female Mouse Model of Rett Syndrome. Journal of neuropathology and experimental neurology, 80(3), 265–273. https://doi.org/10.1093/jnen/nlaa158

15. De Filippis, B., Nativio, P., Fabbri, A., Ricceri, L., Adriani, W., Lacivita, E., Leopoldo, M., Passarelli, F., Fuso, A., & Laviola, G. (2014). Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for Rett syndrome. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 39(11), 2506–2518. https://doi.org/10.1038/npp.2014.105

16. Valenti, D., de Bari, L., Vigli, D., Lacivita, E., Leopoldo, M., Laviola, G., Vacca, R. A., & De Filippis, B. (2017). Stimulation of the brain serotonin receptor 7 rescues mitochondrial dysfunction in female mice from two models of Rett syndrome. Neuropharmacology, 121, 79–88. https://doi.org/10.1016/j.neuropharm.2017.04.024

17. Bokobza, C., Jacquens, A., Guenoun, D., Bianco, B., Galland, A., Pispisa, M., Cruz, A., Zinni, M., Faivre, V., Roumier, A., Lebon, S., Vitalis, T., Csaba, Z., Le Charpentier, T., Schwendimann, L., Young-Ten, P., Degos, V., Monteiro, P., Dournaud, P., Gressens, P., … Van Steenwinckel, J. (2023). Targeting the brain 5-HT7 receptor to prevent hypomyelination in a rodent model of perinatal white matter injuries. Journal of neural transmission (Vienna, Austria : 1996), 130(3), 281–297. 

18. Filosa, S., Pecorelli, A., D'Esposito, M., Valacchi, G., & Hajek, J. (2015). Exploring the possible link between MeCP2 and oxidative stress in Rett syndrome. Free radical biology & medicine, 88(Pt A), 81–90. 

19. Dionisie, V., Ciobanu, A. M., Toma, V. A., Manea, M. C., Baldea, I., Olteanu, D., Sevastre-Berghian, A., Clichici, S., Manea, M., Riga, S., & Filip, G. A. (2021). Escitalopram Targets Oxidative Stress, Caspase-3, BDNF and MeCP2 in the Hippocampus and Frontal Cortex of a Rat Model of Depression Induced by Chronic Unpredictable Mild Stress. International journal of molecular sciences, 22(14), 7483. 

20. Sánchez-Lafuente, C. L., Kalynchuk, L. E., Caruncho, H. J., & Ausió, J. (2022). The Role of MeCP2 in Regulating Synaptic Plasticity in the Context of Stress and Depression. Cells, 11(4), 748. 

21. Torres-Pérez, J. V., Martínez-Rodríguez, E., Forte, A., Blanco-Gómez, C., Stork, O., Lanuza, E., Santos, M., & Agustín-Pavón, C. (2022). Early life stress exacerbates behavioural and neuronal alterations in adolescent male mice lacking methyl-CpG binding protein 2 (Mecp2). Frontiers in behavioral neuroscience, 16, 974692.

22. Matijevic, T., Knezevic, J., Slavica, M., & Pavelic, J. (2009). Rett syndrome: from the gene to the disease. European neurology, 61(1), 3–10. 

23. De Filippis, B., Chiodi, V., Adriani, W., Lacivita, E., Mallozzi, C., Leopoldo, M., Domenici, M. R., Fuso, A., & Laviola, G. (2015). Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome. Frontiers in behavioral neuroscience, 9, 86. 

24. Abdala, A. P., Bissonnette, J. M., & Newman-Tancredi, A. (2014). Pinpointing brainstem mechanisms responsible for autonomic dysfunction in Rett syndrome: therapeutic perspectives for 5-HT1A agonists. Frontiers in physiology, 5, 205.

25. Ren, J., Ding, X., Funk, G. D., & Greer, J. J. (2012). Anxiety-related mechanisms of respiratory dysfunction in a mouse model of Rett syndrome. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(48), 17230–17240.