[1] O. H. Jafari amd S. K. Mustikovela, K. Pertsch, E. Brachmann, and C. Rother. iPose: Instance- aware 6D pose estimation of partly occluded objects. In ACCV, 2018.
[2] A.Anoosheh,T.Sattler,R.Timofte,M.Pollefeys,andL.VanGool.Night-to-DayImageTranslation for Retrieval-based Localization. In ICRA, 2018.
[3] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD: CNN architecture for weakly supervised place recognition. In CVPR, 2016.
[4] R. Arandjelovic and A. Zisserman. Three things everyone should know to improve object retrieval. In CVPR, June 2012.
[5] Y. Avrithis, Y. Kalantidis, G. Tolias, and E. Spyrou. Retrieving Landmark and Non-Landmark Images from Community Photo Collections. In ACM Multimedia, 2010.
[6] A. Babenko and V. Lempitsky. Aggregating deep convolutional features for image retrieval. In ICCV, 2015.
[7] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky. Neural codes for image retrieval. In ECCV, 2014.
[8] V. Balntas, S. Li, and V. Prisacariu. RelocNet: Continuous Metric Learning Relocalisation using Neural Nets. In ECCV, 2018.
[9] E. Brachmann. Learning to Predict Dense Correspondences for 6D Pose Estimation. PhD thesis, Dresden University of Technology, Germany, 2018.
[10] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother. Learning 6D Object Pose Estimation using 3D Object Coordinates. In ECCV, 2014.
[11] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold, and C. Rother. DSAC - Differentiable RANSAC for Camera Localization. In CVPR, 2017.
[12] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, and C. Rother. Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image. In CVPR, 2016.
[13] E. Brachmann and C. Rother. Learning Less is More - 6D Camera Localization via 3D Surface Regression. In CVPR, 2018.
[14] S. Brahmbhatt, J. Gu, K. Kim, J. Hays, and J. Kautz. Geometry-Aware Learning of Maps for Camera Localization. In CVPR, 2018.
[15] M. Bujnak, Z. Kukelova, and T. Pajdla. New efficient solution to the absolute pose problem for camera with unknown focal length. In ACCV, 2010.
[16] A. Bursuc, G. Tolias, and H. J ́egou. Kernel local descriptors with implicit rotation matching. In ICMR, 2015.
[17] F. Camposeco., A. Cohen, M. Pollefeys, and T. Sattler. Hybrid Scene Compression for Visual Localization. CVPR 2019.
[18] F. Camposeco, T. Sattler, A. Cohen, A. Geiger, and M. Pollefeys. Toroidal Constraints for Two Point Localization Under High Outlier Ratios. In CVPR, 2017.
[19] S. Cao and N. Snavely. Graph-Based Discriminative Learning for Location Recognition. In CVPR, 2013.
[20] S. Cao and N. Snavely. Minimal Scene Descriptions from Structure from Motion Models. In CVPR, 2014.
[21] T. Cavallari, S. Golodetz, N. A. Lord, J. Valentin, L. Di Stefano, and P. H. S. Torr. On-The-Fly Adaptation of Regression Forests for Online Camera Relocalisation. In CVPR, 2017.
[22] D.M. Chen, G. Baatz, K. Köser, S.S. Tsai, R. Vedantham, T. Pylvänäinen, K. Roimela, Xin Chen, J. Bach, M. Pollefeys, B. Girod, and R. Grzeszczuk. City-scale landmark identification on mobile devices. In CVPR, 2011.
[23] S. Choudhary and P. J. Narayanan. Visibility probability structure from sfm datasets and applica- tions. In ECCV, 2012.
[24] R. Clark, S. Wang, A. Markham, N. Trigoni, and H. Wen. VidLoc: A Deep Spatio-Temporal Model for 6-DoF Video-Clip Relocalization. In CVPR, 2017.
[25] M. Cummins and P. Newman. Highly Scalable Appearance-Only SLAM - FAB-MAP 2.0. In RSS, 2009.
[26] J. Delhumeau, P.-H. Gosselin, H. Jégou, and P. Pérez. Revisiting the VLAD image representation. In ACM Multimedia, Barcelona, Spain, October 2013.
[27] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, 2014.
[28] A. Gordo, J. Almazan, J. Revaud, and D. Larlus. Deep image retrieval: Learning global represen- tations for image search. In ECCV, 2016.
[29] P. Gronat, G. Obozinski, J. Sivic, and T. Pajdla. Learning per-location classifiers for visual place recognition. In CVPR, 2013.
[30] A. Guzman-Rivera, P. Kohli, B. Glocker, J. Shotton, T. Sharp, A. Fitzgibbon, and S. Izadi. Multi- Output Learning for Camera Relocalization. In CVPR, 2014.
[31] R.M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nölle. Review and analysis of solutions of the three point perspective pose estimation problem. IJCV, 13(3):331–356, 1994.
[32] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge Univ. Press, 2nd edition, 2004.
[33] T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. GlentBuch, D. Kraft, B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt, F. Tombari, T.-K. Kim, J. Matas, and C. Rother. iPose: Instance-aware 6D pose estimation of partly occluded objects. In ECCV, 2018.
[34] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. Mining on manifolds: Metric learning without labels. In CVPR, 2018.
[35] H. Jégou, M. Douze, and C. Schmid. On the burstiness of visual elements. In CVPR, 2009.
[36] H. Jégou, M. Douze, and C. Schmid. Improving bag-of-features for large scale image search. IJCV,
87(3), February 2010.
[37] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image
representation. In CVPR, 2010.
[38] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid. Aggregating local image descriptors into compact codes. PAMI, 34(9):1704–1716, September 2012.
[39] K. Josephson and M. Byröd. Pose estimation with radial distortion and unknown focal length. In CVPR, 2009.
[40] Y. Kalantidis, C. Mellina, and S. Osindero. Cross-dimensional weighting for aggregated deep convolutional features. In arXiv:1512.04065, 2015.
[41] A. Kendall and R. Cipolla. Modelling Uncertainty in Deep Learning for Camera Relocalization. In ICRA, 2016.
[42] A. Kendall and R. Cipolla. Geometric loss functions for camera pose regression with deep learning. In CVPR, 2017.
[43] A. Kendall, M. Grimes, and R. Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. In ICCV, 2015.
[44] J. Knopp, J. Sivic, and T. Pajdla. Avoding Confusing Features in Place Recognition. In ECCV, 2010.
[45] A. Krull, E. Brachmann, F. Michel, M. Y. Yang, S. Gumhold, and C. Rother. Learning Analysis- by-Synthesis for 6D Pose Estimation in RGB-D Images. In ICCV, 2015.
[46] A. Krull, E. Brachmann, S. Nowozin, F. Michel, J. Shotton, and C. Rother. PoseAgent: Budget- Constrained 6D Object Pose Estimation via Reinforcement Learning. In CVPR, 2017.
[47] A. Krull, F. Michel, E. Brachmann, S. Gumhold, S. Ihrke, and C. Rother. 6-DOF Model Based Tracking via Object Coordinate Regression. In ACCV, 2014.
[48] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide Pose Estimation Using 3D Point Clouds. In ECCV, 2012.
[49] Y. Li, N. Snavely, and D. P. Huttenlocher. Location Recognition using Prioritized Feature Matching. In ECCV, 2010.
[50] N. Lianos, J. L. Schönberger, M. Pollefeys, and T. Sattler. VSO: Visual Semantic Odometry. In ECCV, 2018.
[51] H. Lim, S. N. Sinha, M. F. Cohen, and M. Uyttendaele. Real-Time Image-Based 6-DOF Localization in Large-Scale Environments. In CVPR, 2012.
[52] L. Liu, H. Li, and Y. Dai. Efficient Global 2D-3D Matching for Camera Localization in a Large-Scale 3D Map. In ICCV, 2017.
[53] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart. Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization. In RSS, 2015.
[54] D. Massiceti, A. Krull, E. Brachmann, C. Rother, and P. H.S. Torr. Random Forests versus Neural Networks - What’s Best for Camera Relocalization? In ICRA, 2017.
[55] F. Michel, A. Kirillov, E. Brachmann, A. Krull, S. Gumhold, B. Savchynskyy, and C. Rother. Global Hypothesis Generation for 6D Object Pose Estimation. In CVPR, 2017.
[56] F. Michel, A. Krull, E. Brachmann, M. Y. Yang, S. Gumhold, and C. Rother. Pose Estimation of Kinematic Chain Instances via Object Coordinate Regression. In BMVC, 2015.
[57] S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt. Scalable 6-DOF Localization on Mobile Devices. In ECCV, 2014.
[58] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm configura- tion. In VISAPP, 2009.
[59] A. Mukundan, G. Tolias, A. Bursuc, H. Jegou, and O. Chum. Understanding and improving kernel local descriptors. IJCV, 2019.
[60] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In CVPR, 2006.
[61] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han. Large-Scale Image Retrieval with Attentive Deep Local Features. In ICCV, 2017.
[62] M. Perdoch, O. Chum, and J. Matas. Efficient representation of local geometry for large scale object retrieval. In CVPR, June 2009.
[63] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object Retrieval with Large Vocabularies and Fast Spatial Matching. In CVPR, 2007.
[64] T. Quack, B. Leibe, and L. Van Gool. World-Scale Mining of Objects and Events from Community Photo Collections. In CIVR, 2008.
[65] F. Radenovic, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. Revisiting oxford and paris: Large-scale image retrieval benchmarking. In CVPR, 2018.
[66] F. Radenovic, G. Tolias, and O. Chum. CNN image retrieval learns from BoW: Unsupervised fine-tuning with hard examples. In ECCV, 2016.
[67] F. Radenovic, G. Tolias, and O. Chum. Deep shape matching. In ECCV, 2018.
[68] N. Radwan, A. Valada, and W. Burgard. Vlocnet++: Deep multitask learning for semantic visual localization and odometry. RA-L, 2018.
[69] A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson. A baseline for visual instance retrieval with deep convolutional networks. In arXiv:1412.6574, 2014.
[70] T. Sattler, M. Havlena, F. Radenovic, K. Schindler, and M. Pollefeys. Hyperpoints and Fine Vo- cabularies for Large-Scale Location Recognition. In ICCV, 2015.
[71] T. Sattler, M. Havlena, K. Schindler, and M. Pollefeys. Large-Scale Location Recognition And The Geometric Burstiness Problem. In CVPR, 2016.
[72] T. Sattler, B. Leibe, and L. Kobbelt. Efficient & Effective Prioritized Matching for Large-Scale Image-Based Localization. PAMI, 39(9):1744–1756, 2017.
[73] T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, F. Kahl, and T. Pajdla. Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions. In CVPR, 2018.
[74] T. Sattler, C. Sweeney, and M. Pollefeys. On Sampling Focal Length Values to Solve the Absolute Pose Problem. In ECCV, 2014.
[75] T. Sattler, A. Torii, J. Sivic, M. Pollefeys, H. Taira, M. Okutomi, and T. Pajdla. Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization? In CVPR, 2017.
[76] N. Savinov, A. Seki, L. Ladicky, T. Sattler, and M. Pollefeys. Quad-networks: unsupervised learning to rank for interest point detection. In CVPR, 2017.
[77] G. Schindler, M. Brown, and R. Szeliski. City-Scale Location Recognition. In CVPR, 2007.
[78] J. L. Schönberger, H. Hardmeier, T. Sattler, and M. Pollefeys. Evaluation of Hand-Crafted and Learned Local Features. In CVPR, 2017.
[79] J. L. Schönberger, M. Pollefeys, A. Geiger, and T. Sattler. Semantic Visual Localization. In CVPR, 2018.
[80] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon. Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images. CVPR, 2013.
[81] J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach to Object Matching in Videos. In ICCV, 2003.
[82] E. Stenborg, C. Toft, and L. Hammarstrand. Long-term Visual Localization using Semantically Segmented Images. In ICRA, 2018.
[83] L. Svärm, O. Enqvist, F. Kahl, and M. Oskarsson. City-Scale Localization for Cameras with Known Vertical Direction. PAMI, 39(7):1455–1461, 2017.
[84] C. Sweeney, T. Sattler, M. Turk, T. Ho ̈llerer, and M. Pollefeys. Optimizing the Viewing Graph for Structure-from-Motion. In ICCV, 2016.
[85] C. Toft, C. Olsson, and F. Kahl. Long-term 3D Localization and Pose from Semantic Labellings. In ICCV Workshops, 2017.
[86] C. Toft, E. Stenborg, L. Hammarstrand, L. Brynte, M. Pollefeys, T. Sattler, and F. Kahl. Semantic Match Consistency for Long-Term Visual Localization. In ECCV, 2018.
[87] G. Tolias and Y. Avrithis. Speeded-up relaxed spatial matching. In ICCV, 2011.
[88] G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not to aggregate: Selective match kernels for image search. In ICCV, 2013.
[89] G. Tolias, Y. Avrithis, and H. Jégou. Image search with selective match kernels: aggregation across single and multiple images. IJCV, 2015.
[90] G. Tolias and O. Chum. Asymmetric feature maps with application to sketch based retrieval. In CVPR, 2017.
[91] G. Tolias, T. Furon, and H. Jégou. Orientation covariant aggregation of local descriptors with embeddings. In ECCV, 2014.
[92] G. Tolias, Y. Kalantidis, and Y. Avrithis. Symcity: Feature selection by symmetry for large scale image retrieval. In ACM Multimedia, 2012.
[93] G. Tolias, R. Sicre, and Hervé Jégou. Particular object retrieval with integral max-pooling of cnn activations. In ICLR, 2016.
[94] A. Torii, J. Sivic, and T. Pajdla. Visual Localization by Linear Combination of Image Descriptors. In MVW, 2011.
[95] A. Torii, J. Sivic, T. Pajdla, and M. Okutomi. Visual Place Recognition with Repetitive Structures. In CVPR, 2013.
[96] A. Valada, N. Radwan, and W. Burgard. Deep auxiliary learning for visual localization and odom- etry. In ICRA, 2018.
[97] J. Valentin, M. Nießner, J. Shotton, A. Fitzgibbon, S. Izadi, and P. H. S. Torr. Exploiting Uncer- tainty in Regression Forests for Accurate Camera Relocalization. In CVPR, 2015.
[98] F. Walch, C. Hazirbas, L. Leal-Taixé, T. Sattler, S. Hilsenbeck, and D. Cremers. Image-based localization using LSTMs for structured feature correlation. In ICCV, 2017.
[99] A. R. Zamir and M. Shah. Accurate Image Localization Based on Google Maps Street View. In ECCV, 2010.
[100] B. Zeisl, T. Sattler, and M. Pollefeys. Camera Pose Voting for Large-Scale Image-Based Localization. In ICCV, 2015.
[101] W. Zhang and J. Kosecka. Image based localization in urban environments. In 3DPVT, 2006.