Publications
đź“„ = pdf link
đź’» = code link
2024:
C. Louis, L.J.S. Halloran, & C. Roques. "Seasonal and diurnal freeze-thaw dynamics of a rock glacier and their impacts on mixing and solute transport" EGUSphere Preprint. doi:10.5194/egusphere-2024-927 đź“„
2023:
L.J.S. Halloran, J. Millwater, D. Hunkeler, & M. Arnoux. "Climate change impacts on groundwater discharge-dependent streamflow in an alpine headwater catchment", Science of the Total Environment 902, 166009. 10.1016/j.scitotenv.2023.166009 đź“„
D.J. Irvine, L.J.S. Halloran, & P. Brunner. "Opportunities and limitations of the ChatGPT Advanced Data Analysis plugin for hydrological analyses" Hydrological Processes 37:10, e15015. doi:10.1002/hyp.15015 đź“„
S. Mhanna, L.J.S. Halloran, F. Zwahlen, A. Haj Asaad, & P. Brunner. "Using machine learning and remote sensing to track land use/land cover changes due to armed conflict", Science of the Total Environment 898, 165600. 10.1016/j.scitotenv.2023.165600Â đź“„
O.S. Schilling, L.J.S. Halloran, H. Delottier, Y. Sano, & R. Therrien. "Advances and emerging methods in tracer hydrogeology", Frontiers in Water 5, 1243114. 10.3389/frwa.2023.1243114Â đź“„
L.J.S. Halloran, S. Mhanna, & P. Brunner. "AI tools such as ChatGPT will disrupt hydrology, too", Hydrological Processes 37:3, e14843. doi:10.1002/hyp.14843Â đź“„
2022:
L.J.S. Halloran. "Improving groundwater storage change estimates using time-lapse gravimetry with Gravi4GW", Environmental Modelling and Software 150, 105340. doi:10.1016/j.envsoft.2022.105340 Â đź“„ đź’»
2021:
L.J.S. Halloran, F. Vakili, P. Wanner, O. Shouakar-Stash, & D. Hunkeler (2021). "Sorption- and diffusion-induced isotopic fractionation in chloroethenes", Science of the Total Environment 788, 147826. doi:10.1016/j.scitotenv.2021.147826 đź“„
2020:
M. Arnoux, L.J.S. Halloran, E. Berdat, & D. Hunkeler (2020) "Characterising seasonal groundwater storage in alpine catchments using time-lapse gravimetry, water stable isotopes, and water balance methods", Hydrological Processes 34:22, 4319-4333. doi:10.1002/hyp.13884Â
L.J.S. Halloran & D. Hunkeler (2020) "Controls on the persistence of aqueous-phase groundwater contaminants in the presence of reactive back-diffusion", Science of the Total Environment 722, 137749. doi:10.1016/j.scitotenv.2020.137749Â đź“„ đź’»
J. Zimmermann, L.J.S. Halloran, & D. Hunkeler (2020) "Tracking Chlorinated Contaminants in the Subsurface Using Compound-Specific Chlorine Isotope Analysis: A Review of Principles, Current Challenges and Applications." Chemosphere 244, 125476. doi:10.1016/j.chemosphere.2019.125476 đź“„
2019:
L.J.S. Halloran, P. Brunner, & D. Hunkeler (2019) “COMPEST, a PEST-COMSOL interface for inverse multiphysics modelling: Development and application to isotopic fractionation of groundwater contaminants.” Computers and Geosciences 126, 107-119. doi:10.1016/j.cageo.2019.02.001 📄 💻
2018:
A. Badin, F. Braun, L.J.S. Halloran, J. Maillard, & D. Hunkeler (2018). “Modelling of C/Cl isotopic behaviour during chloroethene biotic reductive dechlorination: capabilities and limitations of simplified and comprehensive models.” PLOS One 13:8, e0202416. doi:10.1371/journal.pone.0202416 📄
G.C. Rau, R.I. Acworth, L.J.S. Halloran, W.A. Timms, & M.O. Cuthbert (2018). “Quantifying compressible groundwater storage by combining cross-hole seismic surveys and head response to atmospheric tides.” Journal of Geophysical Research: Earth Surface 123, 1910–1930. doi:10.1029/2018JF004660
2017:
L.J.S. Halloran, M.S. Andersen & G.C. Rau (2017). “Investigation of the thermal regime and subsurface properties of a tidally-affected, variably saturated streambed,” Hydrological Processes 31:4, 2541-2555. doi:10.1002/hyp.11197 📄
G.C. Rau, L.J.S. Halloran, M.O. Cuthbert, M.S. Andersen, R.I. Acworth & J. Tellam (2017). “Streambed thermal signatures characterize the dynamics of surface-groundwater interactions in ephemeral channels,” Advances in Water Resources 107, 354-369. doi:10.1016/j.advwatres.2017.07.005
R.I. Acworth, G.C. Rau, L.J.S. Halloran, & W.A. Timms (2017). Vertical groundwater storage properties and changes in confinement determined using hydraulic head response to atmospheric tides,” Water Resources Research 53:4, 2984-2997. doi:10.1002/2016WR020311
2016:
L.J.S. Halloran, G.C. Rau & M.S. Andersen (2016). “Heat as a tracer to quantify processes and properties in the vadose zone: A review,” Earth-Science Reviews 159, 358-373. doi:10.1016/j.earscirev.2016.06.009 📄
R.I. Acworth, L.J.S. Halloran, G.C. Rau, M.O. Cuthbert & T. Bernardi (2016). “An objective frequency-domain method for quantifying confined aquifer compressible storage using Earth and atmospheric tides,” Geophysical Research Letters 43:22, 11671-11678. doi:10.1002/2016GL071328
L.J.S. Halloran, H. Roshan, G.C. Rau, and M.S. Andersen (2016). “Calculating water saturation from passive temperature measurements in near-surface sediments: Development of a semi-analytical model,” Advances in Water Resources 89, 67-79. doi:10.1016/j.advwatres.2016.01.007 📄
L.J.S. Halloran, H. Roshan, G.C. Rau, M.S. Andersen, and R.I. Acworth (2016). “Improved spatial delineation of streambed properties and water fluxes using distributed temperature sensing,” Hydrological Processes 30:15, 2686-2702. doi:10.1002/hyp.10806 📄
2015:
G.C. Rau, M.O. Cuthbert, A.M. McCallum, L.J.S. Halloran, and M.S. Andersen (2015). “Assessing the accuracy of 1-D analytical heat tracing for estimating near-surface sediment thermal diffusivity and water flux under transient conditions,” Journal of Geophysical Research: Earth Surface 120:8, 1551–1573. doi:10.1002/2015JF003466Â
Older (MSc/BSc days):
P.C. Hines, J.C. Osler, J.G.E. Scrutton, and L.J.S. Halloran (2010). “Time-of-Flight Measurements of Acoustic Wave Speed in a Sandy Sediment at 0.6–20 kHz,” IEEE Journal of Oceanic Engineering 35:3, 502-515. doi:10.1109/JOE.2010.2054291
L.J.S. Halloran, S. Fostner, E. Paradis, and J.A. Behr (2009). “Specific mass shift of potassium 5P1/2 state,” Optics Communications 282:4, 554–557. doi:10.1016/j.optcom.2008.10.045
D. Duchesne, L. Razzari, L. Halloran, R. Morandotti, A. J. Spring Thorpe, D. N. Christodoulides, and D. J. Moss (2009). “Two-photon photodetector in a multiquantum well GaAs laser structure at 1.55μm,” Optics Express 17, 5298-5310. doi:10.1364/OE.17.005298