【講演題目】Links of mixed singularities with "nice" properties
【開催期間】11月14日(金) 16:00〜17:00
【場所】W1-C-514 (トポロジーセミナー)
【講師】Raimundo Araujo dos Santos 氏 (University of Sao Paulo, Brazil)
【講演要旨】こちら(pdf ファイル) をご覧ください.以下は TeX 用の原文です.
Given a non-constant holomorphic map germ $f: (\C^{2},0)\to (\C,0)$ it was proved by J. Milnor that, there exists a smooth locally trivial fibration, with projection given by $\arg(f):=\dfrac{f}{\|f\|}:S^{3}_{\epsilon}\setminus (\{f=0\}\cap S_{\epsilon}^{3}) \to S^1,$ for all $\epsilon>0$ small enough. It was called later {\bf the Milnor fibration associated to the singularity $f.$}
In the special case where the singular locus of $f$ is only the origin, $Sing (f)=\{0\},$ it is well known that the isotopy type of $K_{f}:=\{f=0\}\cap S_{\epsilon}^{3}$ does not depend on the choice of $\epsilon$ again, if it is chosen small enough. Hence, one may also associate to the singularity $f$ this interesting topological object $K_{f}$ which is a link on the 3-sphere, in the classical sense of algebraic topology (i.e., {\bf an embedding of finite many disjoint union of $S^1$ into $S^{3}$}).
Now, for a mixed polynomial map germ (to be introduced along the talk) $f: (\C^{2},0)\to (\C,0)$ the Milnor fibration as above is not defined in general, for several many different reasons.
In this talk, with the help of the Newton polyhedron, we will introduce a special class of mixed singularities where one can guarantee the existence of a Milnor fibration (but with projection {\bf not} necessarily given by $arg(f)$ as in the holomorphic case), where somehow is possible to describe the behavior of its associated links $K_{f}:=\{f=0\}\cap S_{\epsilon}^{3}.$
【講演題目】Constraint qualification for generic parameter families of constraints in optimization
【開催期間】11月21日(金) 16:00〜17:00
【場所】W1-C-514 (トポロジーセミナー)
【講師】早野健太氏(慶應義塾大学)
【講演要旨】Constrained optimization is a problem of minimizing objective functions within the feasible set that is described by the system of equalities and inequalities of constraint functions. A fundamental tool for characterizing solutions is the Karush–Kuhn–Tucker (KKT) condition, which requires the existence of suitable Lagrange multipliers. In unconstrained optimization, this reduces to the familiar first-order condition, which every local minimizer satisfies. In constrained problems, by contrast, the existence of multipliers does not automatically follow from local minimality. This fact is precisely what motivates constraint qualifications: they are assumptions placed only on the constraint system, ensuring the validity of the KKT condition at all local minimizers. In this talk, we first introduce a classification result on the map-germs that appear in generic parameter families of constrained functions, obtained by applying techniques from singularity theory. We then explain when the map-germs arising in this classification satisfy several well-known constraint qualifications.
【講演題目】On diffeomorphisms of irreducible 4-manifolds
【開催期間】11月28日(金) 15:30〜16:30
【場所】W1-D-313 (数理談話会+幾何学セミナー+トポロジーセミナー合同セミナー)
※15:00〜15:30にティータイム(談話室,C-515)があります.
【講師】今野北斗氏(東京大学)
【講演要旨】可微分閉4次元多様体が既約 (irreducible) とは,それが非自明な連結和分解を持たないことをいう.その定義から,既約な4次元多様体は4次元トポロジーにおけるbuilding blockであり,また典型的には (minimalな) シンプレクティック4次元多様体や複素曲面のunderlyingな可微分多様体として表れる.重要なクラスの4次元多様体であるが,その微分同相群について知られていることは最近まで大変少なかった.この対象に対する微分位相幾何やシンプレクティック幾何の基本的な問題が,族のゲージ理論で解決できることを説明する.
【講演題目】TBA
【開催期間】12月11日(木) 16:30〜17:30
【場所】TBA (数理談話会+トポロジーセミナー合同セミナー)
【講師】大場貴裕氏(大阪大学)
【講演要旨】TBA
【講演題目】TBA
【開催期間】12月19日(金) 16:00〜17:00
【場所】W1-C-514 (トポロジーセミナー)
【講師】佐藤隆夫氏(東京理科大学)
【講演要旨】TBA
【講演題目】TBA
【開催期間】2026年1月9日(金) 16:00〜17:00
【場所】W1-C-514 (トポロジーセミナー)
【講師】奥田喬之氏(青山学院大学社会情報学部)
【講演要旨】TBA
※備忘録:1/30 はC-514は使用不可.1/16は全学休講.
幾何学セミナー世話人 大津幸男 (otsu_at_math.kyushu-u.ac.jp )
トポロジーセミナー世話人 浜田法行(hamada_at_imi.kyushu-u.ac.jp )