Задачи на бросание игральных кубиков
Задачи на бросание игральных кубиков
Основной метод решения подобных задач - использование формулы классической вероятности, который мы и разберем на примерах ниже.
P=m/n, где n - число всех равновозможных элементарных исходов нашего случайного эксперимента с подбрасыванием, а m - число тех исходов, которые благоприятствуют событию.
Вероятность находится по формуле
P=m/n, где n - число всех равновозможных элементарных исходов эксперимента с подбрасыванием кубика или кости, а m - число тех исходов, которые благоприятствуют событию.
Игральная кость брошена один раз. Какова вероятность, что выпало четное число очков?
Так как игральная кость представляет собой кубик (еще говорят, правильная игральная кость, то есть кубик сбалансированный, так что выпадает на все грани с одинаковой вероятностью), граней у кубика 6 (с числом очков от 1 до 6, обычно обозначаемых точкам), то и общее число исходов в задаче n=6. Благоприятствуют событию только такие исходы, когда выпадет грань с 2, 4 или 6 очками (только четные), таких граней m=3. Тогда искомая вероятность равна
P=3/6=1/2=0.5.
Брошен игральный кубик. Найти вероятность выпадения не менее 5 очков.
Рассуждаем также, как и в предыдущем примере. Общее число равновозможных исходов при бросании игрального кубика n=6, а условию "выпало не менее 5 очков", то есть "выпало или 5, или 6 очков" удовлетворяют 2 исхода, m=2.
Нужная вероятность равна P=2/6=1/3=0.333.
Задачи для решения
Когда речь идет о задачах с бросанием 2 костей, очень удобно использовать таблицу выпадения очков. По горизонтали отложим число очков, которое выпало на первой кости, по вертикали - число очков, выпавшее на второй кости.
А что же в ячейках таблицы, спросите вы? А это зависит от того, какую задачу мы будем решать. Будет задача про сумму очков - запишем туда сумму, про разность - запишем разность и так далее. Приступаем?
Одновременно бросают 2 игральные кости. Найти вероятность того, что в сумме выпадет менее 5 очков.
Сначала разберемся с общим числом исходов эксперимента. когда мы бросали одну кость, все было очевидно, 6 граней - 6 исходов. Здесь костей уже две, поэтому исходы можно представлять как упорядоченные пары чисел вида (x,y), где
x - сколько очков выпало на первой кости (от 1 до 6),
y - сколько очков выпало на второй кости (от 1 до 6).
Очевидно, что всего таких пар чисел будет n=6⋅6=36 (и им соответствуют как раз 36 ячеек в таблице исходов).
Вот и пришло время заполнять таблицу. В каждую ячейку занесем сумму числа очков выпавших на первой и второй кости и получим получим таблицу, представленную выше.
Теперь эта таблица поможет нам найти число, благоприятствующих событию "в сумме выпадет менее 5 очков" исходов. Для этого подсчитаем число ячеек, в которых значение суммы будет меньше 5 (то есть 2, 3 или 4). Для наглядности закрасим эти ячейки, их будет m=6.
Тогда вероятность равна: P=6/36=1/6.
Игральную кость бросают дважды. Найти вероятность того, что разность числа очков на первой и второй кости будет от 2 до 5.
Запишем таблицу разностей очков, выделим в ней ячейки, в которых значение разности будет между 2 и 5.
Итак, что общее число равновозможных элементарных исходов n=36, а число благоприятствующих исходов (число закрашенных ячеек в таблице выше) m=10.
Тогда вероятность события будет равной P=10/36=5/18.
Задачи для решения