3D genome organization

DNA carries genetic information, and it is packaged into a higher-order chromatin structure. Thus, understanding higher-order chromatin structure is essential to dissecting gene regulatory mechanisms. Despite many recent efforts, the underlying principles of the establishment and dynamics of higher-order chromatin structure remain elusive. To address such fundamental questions, we employ 3C-based proximity ligation approaches, including Hi-C, capture Hi-C, and mathematical modeling of higher-order chromatin structure. We also develop new computational and experimental methods to explore unknown principles of 3D genome organization.

promoter capture Hi-C

A large number of putative cis-regulatory sequences have been annotated in the human genome, but the genes they control remain poorly defined. To bridge this gap, we generate maps of long-range chromatin interactions centered on 18,943 well-annotated promoters for protein-coding genes in 27 human cell/tissue types. We use this information to infer the target genes of 70,329 candidate regulatory elements, and suggest potential regulatory function for 27,325 non-coding sequence variants associated with 2,117 physiological traits and diseases. Integrative analysis of these promoter-centered interactome maps reveals widespread enhancer-like promoters involved in gene regulation and common molecular pathways underlying distinct groups of human traits and diseases.

3DIV: A 3D-genome Interaction Viewer and database

Three-dimensional (3D) chromatin structure is an emerging paradigm for understanding gene regulation mechanisms. Hi-C (high-throughput chromatin conformation capture), a method to detect long-range chromatin interactions, allows extensive genome-wide investigation of 3D chromatin structure. However, broad application of Hi-C data have been hindered by the level of complexity in processing Hi-C data and the large size of raw sequencing data. In order to overcome these limitations, we constructed a database named 3DIV (a 3D-genome Interaction Viewer and database) that provides a list of long-range chromatin interaction partners for the queried locus with genomic and epigenomic annotations. 3DIV is the first of its kind to collect all publicly available human Hi-C data to provide 66 billion uniformly processed raw Hi-C read pairs obtained from 80 different human cell/tissue types. In contrast to other databases, 3DIV uniquely provides normalized chromatin interaction frequencies against genomic distance dependent background signals and a dynamic browsing visualization tool for the listed interactions, which could greatly advance the interpretation of chromatin interactions. '3DIV' is available at http://kobic.kr/3div.

covNorm: An R package for coverage based normalization of Hi-C and capture Hi-C data

Hi-C and capture Hi-C have greatly advanced our understanding of the principles of higher-order chromatin structure. In line with the evolution of the Hi-C protocols, there is a demand for an advanced computational method that can be applied to the various forms of Hi-C protocols and effectively remove innate biases. To resolve this issue, we developed an implicit normalization method named “covNorm” and implemented it as an R package. The proposed method can perform a complete procedure of data processing for Hi-C and its variants. Starting from the negative binomial model-based normalization for DNA fragment coverages, removal of genomic distance-dependent background and calling of the significant interactions can be applied sequentially. The performance evaluation of covNorm showed enhanced or similar reproducibility in terms of HiC-spector score, correlation of compartment A/B profiles, and detection of reproducible significant long-range chromatin contacts compared to baseline methods in the benchmark datasets. The developed method is powerful in terms of effective normalization of Hi-C and capture Hi-C data, detection of long-range chromatin contacts, and readily extendibility to the other derivative Hi-C protocols. The covNorm R package is freely available at GitHub: https://github.com/kaistcbfg/covNormRpkg.