J. Reyes, P.-H. Tsai, I. Moore, H. Liu, and T. Iliescu, Verifiability and limit consistency of eddy viscosity large eddy simulation reduced order models, 2025. arXiv: 2505.18310 [physics.flu-dyn]. [Online]. Available: https://arxiv.org/abs/2505.18310.
J. Reyes, P.-H. Tsai, J. Novo, and T. Iliescu, A priori error bounds and parameter scalings for the time relaxation reduced order model, 2024. arXiv: 2411.08986 [math.NA]. [Online]. Available: https://arxiv.org/abs/2411.08986.
M. Neda, J. Reyes, and J. Waters, “Verman stabilization for nonlinear Greenshield’s model for traffic flow,” Addressing Modern Challenges in the Mathematical, Statistical, and Computational Sciences: AMMCS 2023 Proceeding, (Accepted).
S. Breckling, J. Fiordilino, J. Reyes*, and S. Shields, “A note on the long-time stability of pressure solutions to the 2D Navier Stokes equation,” Applied Mathematics and Computations, (2024), doi:10.1016/j.amc.2024.128839
L. Davis, M. Neda, F. Pahlevani, J. Reyes*, and J. Waters, “A numerical study of a stabilized hyperbolic equation inspired by models for bio-polymerization,” Computational Methods in Applied Mathematics, (2024), doi:10.1515/cmam-2023-0222
S. C. Huang, A. Johnson, M. Neda, J. Reyes*, and H. Tehrani, “A generalization of the Smagorinsky model,” Applied Mathematics and Computation, vol. 469, p. 128 545, (2024), issn: 0096-3003. doi:10.1016/j.amc.2024.128545.
J.Reyes*, " Examples of identities and inequalities for the nonlinear term in the Navier Stokes equation," Examples and Counterexamples, vol. 3, pp. 100-109, (2023), ISSN: 2666-657X. doi: /10.1016/j.exco.2023.100109
P. J.-S. Shiue, A. G. Shannon, S. C. Huang, and J. E. Reyes, “A generalized computation procedure for Ramanujan-type identities and cubic Shevelev sum,” Notes on Number Theory and Discrete Mathematics, vol. 29, no. 1, pp. 98–129, (2023). doi: 10.7546/nntdm.2023.29.1.98-129
S. Ingimarson, M. Neda, L. Rebholz, J. Reyes, and A. Vu, “Improved long time accuracy for projection methods for Navier-Stokes equations using EMAC formulation,”International Journal of Numerical Analysis & Modeling, vol. 20, no. 2, pp. 176–198, (2023).doi:10.4208/ijnam2023-1008
P. J.-S. Shiue, A. G. Shannon, S. C. Huang, and J. E. Reyes, “Notes on efficient computation of Ramanujan cubic equations,”Notes on Number Theory and Discrete Mathematics, vol. 28, no. 2, pp. 350–375, (2022).doi:10.7546/nntdm.2022.28.2.350-375
P. J. Shuie, S. C. Huang, and J. E. Reyes, “Algorithms for computing sums of powers of arithmetic progressions by using Eulerian numbers,” Notes on Number Theory and Discrete Mathematics, vol. 27, no. 4, pp. 140–148, (2021). doi: 10.7546/nntdm.2021.27.4.140-148.
*Denotes Corresponding Author
Reynold Number = 500
P2/P1 Taylor Hood Finite Elements
Crank-Nicolson Time Stepper
Example Mesh below (Mesh used in videos much more fine)
Reynold Number = 8,000
Ladyzhenskya LES Model used
P2/P1disc Scott-Vogelius Finite Elements
Powell Sabin refined mesh
Course example mesh shown
Crank-Nicolson Time Stepper
P2 Finite Elements
χ (chi) - Tunable stabilization parameter.
Time Filtered Backward Euler Time Stepper
1D- LWR Traffic Model with Greenshields non-linearity