Bioinspired Chemistry Research

자연에서 발견되는 다양한 생명현상은 현재 당면한 과학·기술적 문제들을 해결할 수 있는 실마리를 제공할 것으로 기대된다. 특히 자연 모사 또는 천연물로 형성된 유기 하이브리 구조체는 특유의 높은 생체적합도(biocompatibility)와 더불어 화학적 기능화 및 다기능성 디자인이 가능하여 현재 산적한 문제 해결에 화학적 방법론을 제시할 수 있다. 본 연구그룹은 다음의 화학적 자연 모사 분야를 중점으로 연구를 수행한다.

(1) 자연에 존재하는 다양한 무기물 형성 메커니즘을 모방한 생체모방 광물화반응(bioinspired mineralization) 연구

(2) 생명체의 특별한 현상인 휴면생활(cryptobiosis: 완보동물과 박테리아 내생포자에서 발견되는 외부환경 적응 현상)을 모방한 단일 세포 나노코팅 방법 및 나노코팅 기술의 응용

(3) 자연모사를 통한 새로운 약물전달 시스템 및 광음향영상(photoacoustic imaging)을 이용한 진단/치료를 겸비하는 테라노스틱스 연구

Bioinspired Mineralization

Glass Sponge

Glass Spicules

Diatoms and glass sponges are able to construct their siliceous bodies from small amounts of dissolved silicic acid. The enzymatic synthesis of silica found in silicatein (a silica-forming protein in glass sponges) devoted attention to designing chemical strategies for the formation of organized and functional silica structures with synthetic analogues to silicatein. For example, cysteamine, containing thiol and amine functional groups at the terminal ends, was utilized as a catalyst for bioinspired silicification, and generated discrete silica spheres, hollow silica spheres, and worm-like silica structures under benign conditions. In particular, hollow silica spheres would be the promising material for programmed release of useful ingredients in conjunction with the selective surface modification by silane chemistry.

References: Small 2009, 5(17), 1947-1951; Bull. Korean Chem. Soc. 2010, 31(7), 1831-1832; Chem. Asian J. 2011, 6(8), 1939-1942; Chem. Asian J. 2014, 9(3), 764-768; Bull. Korean Chem. Sci. 2014, 35(11), 3336-3338; Angew. Chem. Int. Ed. 2014, 53(31), 8056-8059; Chem. Commun. 2015, 51(25), 5523-5525.

Nanocoating & Nanomaterials

Living cells are composed of soft and dynamic materials that respond to external chemical environments. In particular, cell surface is the outermost platform for controlling cellular activities, with characteristic properties, such as selective permeation, biomolecular recognition, and molecular transportation. To achieve the artificial manipulation of cellular activities and functions, biocompatible strategis maintaining cell viability, for example, metal-polyphenol nanofilm, have been utilized. The cell growth of coated cell was controlled by the degradation of the metal-polyphenol nanofilm. Furthermore, the nanocoating endowed individual cells with the protective abilities against UV irradiation, lytic enzymes, and silver nanoparticle, thereby being applicable further to other functional cells. Currently, the interest lies in the fabrication of functional cells integrated with hybrid nanomaterials for customized cell-based applications and also the translation of nanotechnology to practical applications in daily life exemplified by the enhanced shelf-life of agricultural products.


References: Angew. Chem. Int. Ed. 2013, 52(47), 12279-12282; Adv. Mater. 2014, 26(13), 2001-2010; Angew. Chem. Int. Ed. 2014, 53(46), 12420-12425; Nanoscale 2015, 7(45), 18918-18922; Acc. Chem. Res. 2016, 49(5), 792-800; Polymers 2017, 9(4), 140; Sci. Rep. 2017, 7, 6980

Drug Delivery & Theranostics

To be added