(35) Supercooled Liquid Phases of Luminescent Zero Dimensional Metal Halide Hybrids J. Phys. Chem. Lett. 2025, Accepted, DOI:10.1021/acs.jpclett.5c01979; Deep Kumar Das‡ , Jumana Hasin Marayathungal‡ , Athira Palakkolil, Dhritismita Sarma, Akram Khan, M Praveen Kumar, Ashwath Kudlu, Mahendra Choudhary, Venkatesha R. Hathwar, Ravi K Pujala, Arup Mahata* and Janardan Kundu*
(34) Unravelling Structure - Luminescence Relationship in Two Dimensional Antimony(III) Doped Cadmium (II) Halide Hybrids J. Mater. Chem. C 2024, Accepted, DOI:10.1039/D4TC03543G; Ashwath Kudlu,‡ Dhritismita Sarma,‡ Deep Kumar Das, Alisha Basheer Shamla, Rangarajan Bakthavatsalam, Venkatesha R. Hathwar, Arup Mahata* and Janardan Kundu*
(33) Rational Design of Zero Dimensional Manganese (II) Halide Hybrids with Suppressed Melting Temperatures J. Phys. Chem. C 2024, Accepted, DOI:10.1021/acs.jpcc.4c04444; Shivangi Singh, Jumana Hasin Marayathungal, Deep Kumar Das; Akram Khan, Rangarajan Bakthavatsalam; Venkatesha Hathwar, Janardan Kundu*
(32) Discerning Structure - Photophysical Property Correlation in Zero Dimensional Antimony(III) Doped Indium(III) Halide Hybrds J. Phys. Chem. Lett. 2024, 15(32), 8224-8232; DOI:10.1021/acs.jpclett.4c01839; Alisha Shamla#, Dhritismita Sarma#, Deep K Das, Vishnu Anilkumar, Rangarajan Bakthavatsalam, Arup Mahata*, Janardan Kundu*
(31)   Bulk Co-assembly of Zero Dimensional Hetero-Metallic Halide Hybrids for Broadband White Light Emission and Optical Thermometry J. Phys. Chem. C. 2023, 127(37), 18474-18484; DOI: 10.1021/acs.jpcc.3c03645
Jumana H Marayathungal, Neeraja Puthuparambil, Deep K Das, Mini Kalyani, Rangarajan Bakthavatsalam, Janardan Kundu* 
(30)   Strong Dopant–Dopant Electronic Coupling in Emissive Codoped Two Dimensional Metal Halide Hybrid
J. Phys. Chem. Lett. 2023, 14(21), 4933–4940; DOI:10.1021/acs.jpclett.3c00902
Ashwath Kudlu, Deep Kumar Das, Rangarajan Bakthavatsalam, Jisvin Sam, Soumyadip Ray, Padmabati Mondal, Sudipta Dutta, Venkatesha R Hathwar, Raghavaiah Pallepogu, and Janardan Kundu*
(29)   Mn2+-Activated Zero Dimensional Metal (Cd, Zn) Halide Hybrids with Near-Unity PLQY and Zero Thermal Quenching
J. Phys. Chem. C 2023, 127(18). 8618-8630 ;DOI:10.1021/acs.jpcc.2c08264 
Jumana M Hasin, Deep Kumar Das, Rangarajan Bakthavatsalam, Jisvin Sam, Venkatesha R Hathwar, Raghavaiah Pallepogu, Sudipta Dutta, Janardan Kundu* 
(28)   Intrinsic vs. extrinsic STE emission enhancement in ns2 ion doped metal (Cd, In) halide hybrids
J. Mater. Chem. C 2023, 11, 3855-3864; DOI: 10.1039/D2TC04361K 
Deep Kumar Das, Rangarajan Bakthavatsalam, Venkatesha R Hathwar, Raghavaiah Pallepogu, Janardan Kundu* 
(27)   Controlled Modulation of Structure and Luminescent Properties of Zero Dimensional Manganese Halide Hybrids through Structure-directing Metal Ion (Cd2+, Zn2+) Centres
Inorg. Chem 2022, 61(13), 5363-5372; DOI: 10.1021/acs.inorgchem.2c00160 
Deep K Das, Rangarajan Bakthavatsalam,* Vishnu Anilkumar, Bhupendra Mali, Md Soif Ahmed, Sai Santosh Kumar Raavi, Raghavaiah Pallepogu, and Janardan Kundu*
J. Mater. Chem. C 2022,10, 360-370; DOI: 10.1039/D1TC04704C
(25) Low Dimensional, broadband, luminescent organic-inorganic hybrid materials for lighting applicatons.
Eur. J. Inorg. Chem. 2021, 4508-4520; DOI: 10.1002/ejic.202100685
Janardan Kundu, Deep K Das
(24) Lead-Free Zero-Dimensional Tellurium (IV) Chloride-Organic Hybrid with Strong Room Temperature Emission as Luminescent Material.
J. Mater. Chem. C 2021, 9, 4351-4358
Biswas, A.; Bakthavatsalam, R.; Bahadur, V.; Biswas, C.; Mali, B. P.; Raavi, S. S. K.; Gonnade, R. G.; Kundu, J.
https://doi.org/10.1039/D0TC05752E.
(23) The Metal Halide Structure and the Extent of Distortion Control the Photo-Physical Properties of Luminescent Zero Dimensional Organic-Antimony(III) Halide Hybrids.
J. Mater. Chem. C 2021, 9 (1), 348–358
Biswas, A.; Bakthavatsalam, R.; Mali, B. P.; Bahadur, V.; Biswas, C.; Raavi, S. S. K.; Gonnade, R. G.; Kundu, J.
https://doi.org/10.1039/d0tc03440a.
(22) Ligand Structure Directed Dimensionality Reduction (2D →1D) in Lead Bromide Perovskite.
J. Phys. Chem. C 2020, 124 (3), 1888–1897
Bakthavatsalam, R.; Haris, M. P. U.; Shaikh, S. R.; Lohar, A.; Mohanty, A.; Moghe, D.; Sharma, S.; Biswas, C.; Raavi, S. S. K.; Gonnade, R. G.; Kundu, J. https://doi.org/10.1021/acs.jpcc.9b11033.
(21) Temperature-Dependent Photoluminescence and Energy-Transfer Dynamics in Mn 2+ -Doped (C4H9NH3)2PbBr4 Two-Dimensional (2D) Layered Perovskite.
J. Phys. Chem. C 2019, 123 (8), 4739–4748
Bakthavatsalam, R.; Biswas, A.; Chakali, M.; Bangal, P. R.; Kore, B. P.; Kundu, J. https://doi.org/10.1021/acs.jpcc.9b00207.
(20) Efficient Broad-Band Emission from Contorted Purely Corner-Shared One Dimensional (1D) Organic Lead Halide Perovskite.
Chem. Mater. 2019, 31 (7), 2253–2257
Biswas, A.; Bakthavatsalam, R.; Shaikh, S. R.; Shinde, A.; Lohar, A.; Jena, S.; Gonnade, R. G.; Kundu, J.
https://doi.org/10.1021/acs.chemmater.9b00069.
(19) Synthetic Control on Structure/Dimensionality and Photophysical Properties of Low Dimensional Organic Lead Bromide Perovskite.
Inorg. Chem. 2018, 57 (21), 13443–13452
Haris, M. P. U.; Bakthavatsalam, R.; Shaikh, S.; Kore, B. P.; Moghe, D.; Gonnade, R. G.; Sarma, D. D.; Kabra, D.; Kundu, J.
https://doi.org/10.1021/acs.inorgchem.8b02042.
(18) Colloidal Mn2+ Doped 2D (n =1) Lead Bromide Perovskites: Efficient Energy Transfer and Role of Anion in Doping Mechanism.
ChemistrySelect 2018, 3 (23), 6585–6595
Usman, M. H. P.; Bakthavatsalam, R.; Kundu, J.
https://doi.org/10.1002/slct.201801248.
(17) A Galvanic Replacement-Based Cu2O Self-Templating Strategy for the Synthesis and Application of Cu2O-Ag Heterostructures and Monometallic (Ag) and Bimetallic (Au-Ag) Hollow Mesocages.
CrystEngComm 2017, 19 (12), 1669–1679
Bakthavatsalam, R.; Kundu, J.
https://doi.org/10.1039/c7ce00110j.
(16) Efficient Exciton to Dopant Energy Transfer in Mn2+-Doped (C4H9NH3)2PbBr4 Two-Dimensional (2D) Layered Perovskites.
Chem. Mater. 2017, 29 (18), 7816–7825
Biswas, A.; Bakthavatsalam, R.; Kundu, J. https://doi.org/10.1021/acs.chemmater.7b02429.
(15) Facile Synthesis and Self-Cleaning Application of Bimetallic (CuSn, CuNi) Dendrites.
ChemistrySelect 2017, 2 (20), 5552–5563
Biswas, A.; Kulkarni, M. A.; Bakthavatsalam, R.; Mondal, S.; Dwivedi, P. K.; Shelke, M. V.; Devi, R. N.; Banpurkar, A. G.; Kundu, J.
https://doi.org/10.1002/slct.201700763.
(14) Solution Chemistry-Based Nano-Structuring of Copper Dendrites for Efficient Use in Catalysis and Superhydrophobic Surfaces.
RSC Adv. 2016, 6 (10), 8416–8430Bakthavatsalam, R.; Ghosh, S.; Biswas, R. K.; Saxena, A.; Raja, A.; Thotiyl, M. O.; Wadhai, S.; Banpurkar, A. G.; Kundu, J. . https://doi.org/10.1039/c5ra22683j.
(13) Matching Solid-State to Solution-Phase Photoluminescence for Near-Unity Down-Conversion Efficiency Using Giant Quantum Dots.
ACS Appl. Mater. Interfaces 2015, 7 (24), 13125–13130Hanson, C. J.; Buck, M. R.; Acharya, K.; Torres, J. A.; Kundu, J.; Ma, X.; Bouquin, S.; Hamilton, C. E.; Htoon, H.; Hollingsworth, J. A. .
https://doi.org/10.1021/acsami.5b02818.
(12) Seeded-Growth, Nanocrystal-Fusion, Ion-Exchange and Inorganic-Ligand Mediated Formation of Semiconductor-Based Colloidal Heterostructured Nanocrystals. CrystEngComm 2014, 16 (40), 9391–9407
Nag, A.; Kundu, J.; Hazarika, A.
https://doi.org/10.1039/c4ce00462k.
(11) Giant Nanocrystal Quantum Dots: Stable down-Conversion Phosphors That Exploit a Large Stokes Shift and Efficient Shell-to-Core Energy Relaxation.
Nano Lett. 2012, 12 (6), 3031–3037
Kundu, J.; Ghosh, Y.; Dennis, A. M.; Htoon, H.; Hollingsworth, J. A. https://doi.org/10.1021/nl3008659.
(10) Polymer-Assisted Chemical Solution Approach to YVO4:Eu Nanoparticle Networks.
J. Mater. Chem. 2012, 22 (12), 5835–5839
Lin, Q.; Xu, Y.; Fu, E.; Baber, S.; Bao, Z.; Yu, L.; Deng, S.; Kundu, J.; Hollingsworth, J.; Bauer, E.; McCleskey, T. M.; Burrell, A. K.; Jia, Q.; Luo, H. https://doi.org/10.1039/c2jm15628h.
(9) Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability.
Nano Lett. 2010, 10 (8), 3184–3189
Lassiter, J. B.; Sobhani, H.; Fan, J. A.; Kundu, J.; Capasso, F.; Nordlander, P.; Halas, N. J. https://doi.org/10.1021/nl102108u.
(8) Real-Time Monitoring of Lipid Transfer between Vesicles and Hybrid Bilayers on Au Nanoshells Using Surface Enhanced Raman Scattering (SERS).
Nanoscale 2009, 1 (1), 114–117Kundu, J.; Levin, C. S.; Halas, N. J. https://doi.org/10.1039/b9nr00063a.
(7) Nanoshell-Based Substrates for Surface Enhanced Spectroscopic Detection of Biomolecules.
Analyst. Royal Society of Chemistry 2009, pp 1745–1750
Levin, C. S.; Kundu, J.; Barhoumi, A.; Halas, N. J.
https://doi.org/10.1039/b909080k.
(6) Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy on Nanoshell Aggregate Substrates.
Chem. Phys. Lett. 2008, 452 (1–3), 115–119
Kundu, J.; Le, F.; Nordlander, P.; Halas, N. J.
https://doi.org/10.1016/j.cplett.2007.12.042.
(5) Tailoring Plasmonic Substrates for Surface Enhanced Spectroscopies.
Chem. Soc. Rev. 2008, 37 (5), 898–911
Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. https://doi.org/10.1039/b705969h.
(4) Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption.
ACS Nano 2008, 2 (4), 707–718
Le, F.; Brandl, D. W.; Urzhumov, Y. A.; Wang, H.; Kundu, J.; Halas, N. J.; Aizpurua, J.; Nordlander, P.
https://doi.org/10.1021/nn800047e.
(3) Interactions of Ibuprofen with Hybrid Lipid Bilayers Probed by Complementary Surface-Enhanced Vibrational Spectroscopies.
J. Phys. Chem. B 2008, 112 (45), 14168–14175
Levin, C. S.; Kundu, J.; Janesko, B. G.; Scuseria, G. E.; Raphael, R. M.; Halas, N. J. https://doi.org/10.1021/jp804374e.
(2) Mesoscopic Nanoshells: Geometry-Dependent Plasmon Resonances beyond the Quasistatic Limit.
J. Chem. Phys. 2007, 127 (20)
Tam, F.; Chen, A. L.; Kundu, J.; Wang, H.; Halas, N. J. https://doi.org/10.1063/1.2796169.
(1) Plasmonic Nanoshell Arrays Combine Surface-Enhanced Vibrational Spectroscopies on a Single Substrate.
Angew. Chemie - Int. Ed. 2007, 46 (47), 9040–9044
Wang, H.; Kundu, J.; Halas, N. J.
https://doi.org/10.1002/anie.200702072.