수리통계학

(Math Stat)

Lecture Note @ KAIST 2018 (Syllabus)

  1. Introduction (Slide) - 8/27 강의
  2. Probability (Slide) - 8/29 강의
  3. Random variable (Slide) - 9/3 강의
  4. Expectation etc (Slide) - 9/5 강의
  5. Bivariate distribution (Slide) - 9/10 강의
  6. Conditional distributions (Slide) - 9/12 강의
  7. Extension to several random variables (Slide) - 9/17 강의
  8. Normal Distribution (Slide) - 9/19 강의
  9. Gamma, Chi-square, and best distribution (Slide) - 9/26 강의
  10. T-distribution and F-distribution (Slide) - 10/1 강의
  11. Binomial and Poisson distribution (Slide) - 10/8 강의
  12. Some elementary statistical Inference (Slide) - 10/10 강의
  13. Introduction to hypothesis testing (Slide) - 10/22 강의
  14. Convergence in probability (Slide) - 10/24 강의
  15. Convergence in distribution, CLT (Slide) - 10/29 강의
  16. Maximum likelihood estimation (Slide) - 11/5 강의
  17. Rao-Cramer lower bound and efficiency (Slide) - 11/7 강의
  18. Likelihood Ratio test (Slide) - 11/12 강의
  19. Goodness of fit test (Slide) - 11/14 강의
  20. Sufficiency 1 (Slide) - 11/19 강의
  21. Sufficiency 2 (Slide) - 11/26 강의
  22. Most Powerful Tests (Slide) - 12/5 강의
  23. Likelihood ratio test (Slide) - 1/21 강의 (Video1; Video2)
  24. ANOVA (Slide) - 1/30 강의