Hallo zusammen,
Da es in den beiden Threads über das Bohnerz und den Kohlenstoffgehalt noch offene Fragen gibt, schreibe ich die grundlegenden chemischen Vorgänge vom Eisenerz bis zum Eisen hier mal in Kurzform rein:
Ich gehe von der häufigsten Verbindung in unseren Eisenerzen, dem Limonit, aus. Es hat die chemische Formel FeOOH, ist also hydroxidisch. Beim Rösten wird daraus Hämatit, das wir im Rennofen einsetzen.
FeOOH --> 2 Fe2O3 + H2O
Im Rennofen vollziehen sich dann drei Reduktionsschritte:
Der in der Holzkohle enthaltene Kohlenstoff wird durch den eingeblasenen Sauerstoff
zu CO2 verbrannt, das bei den dort herrschenden Temperaturen von > 1000 °C sofort zu CO umgewandelt wird.
C + O2 --> CO2
CO2 + C --> 2CO
In drei Reduktionsschritten reagiert dann das entstandene CO mit den unterschiedlichen Eisenoxiden, bis nur noch reines Eisen übrigbleibt. ( 1 - 3 )
1. 3Fe2O3 + CO --> 2Fe3O4 + CO2
Hämatit + Kohlenstoffmonoxid --> Magnetit + Kohlenstoffdioxid
2. Fe3O4 + CO --> 3FeO + CO2
Magnetit + Kohlenstoffmonoxid --> Wüstit + Kohlenstoffdioxid
3. FeO + CO --> Fe + CO2
Wüstit + Kohlenstoffmonoxid --> Eisen + Kohlenstoffdioxid
Mein Freund und Nachbar, der finnische Comiczeichner Jari Banas hat das Ganze mal für eine Schautafel bildhaft dargestellt.
Zuletzt bearbeitet: 11. November 2017 um 16:16, Maria Arians-Kronenberg
Iron, as oxide, is one of the most plentiful elements on earth. But how are those ores converted into metallic bars, the raw material of the blacksmith? Basics of Bloomery Iron Smelting explores the ancient history, provides a theoretical understanding, and details the practical methods needed to build and operate a small scale furnace. The focus is on a Northern European ‘Short Shaft’ type, built of clay and fired with charcoal. This is a proven design based on two decades of practical experimentation by the author and his team.
Topics include :
What is bloomery iron?
Ancient and traditional furnaces
Air in bloomery furnaces
Constructing furnace walls
gevonden op Pinterest verwijzing naar www.haraldthesmith.com.
Preface
Anneke Boonstra, Eindhoven, the Netherlands In 1983, construction started in Eindhoven on an experimental archaeological reconstruction of a peasant village from the Iron Age (750 – 50 BC). The villagehas been extended to become a unique prehistoric open-air museum in the Netherlands, that, besides experimental archaeological aspects, also has educational and recreational objectives.
To celebrate its first ten years of existence, the museum organised an international symposium that took place in October 1993. Naturally, the theme was
iron extraction and iron forging, in theory and in practice. Nine teams from Denmark, Germany, England, France, the Netherlands, Austria and the Czech republic demonstrated their progress in the experimental approach towards iron extraction and
forging. The many individual experiences were compared, and tested against each other. During those eight days, between 16 and 24 October, the most divergent forms of kilns, loupes (puddled iron), and forged objects were manufactured in a relaxed and competitive atmosphere.
The researchers base their tests on existing excavation data such as kilns and ore. They also use results found on loupe or crude iron, of quality iron and iron slag. Although they use the same data, the methods the researchers use in their experiments differ considerably.
During the symposium, the researchers who usually work in isolation, found it extremely interesting to see and hear how their colleagues attempt to find results using the same material.
Their reports confirm that various working methods can lead to comparable results.
The prehistoric open-air museum was very pleased to make a small contribution to answering the question that still fascinates: “what was the ‘prehistoric’ smith’s secret?