Please refer to the ResearchGate or Google Scholar page of the PI for the full list of publications.
Bej, S., Davtyan, N., Wolfien, M., Nassar, M., Wolkenhauer, O. LoRAS: An oversampling approach for imbalanced dataset, Mach Learn vol 110, 279–301 (2021). https://doi.org/10.1007/s10994-020-05913-4
Bej S., Srivastava P., Wolfien M., Wolkenhauer O. Combining uniform manifold approximation with localized affine shadowsampling improves classification of imbalanced datasets 2021 International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1-8, https://ieeexplore.ieee.org/document/9534072
Bej S., Schultz K., Srivastava P., Wolfien M., Wolkenhauer O. A multi-schematic classifier-independent oversampling approach for imbalanced datasets, IEEE Access, vol. 9, pp. 123358-123374, 2021 https://doi.org/10.1109/ACCESS.2021.3108450
Bej S., Galow A-M., David R., Wolfien M., Wolkenhauer O. Automated annotation of rare-cell types from single-cell RNA-sequencing data through synthetic oversampling, BMC Bioinformatics 22, 557 (2021), https://doi.org/10.1186/s12859-021-04469-x
Srivastava P., Bej S., Schultz K., Yordanova K., Wolkenhauer O. Self-Attention-Based Models for the Extraction of Molecular Interactions from Biological Texts. Biomolecules 2021, 11, 1591 https://doi.org/10.3390/biom11111591;
Hahn, W., Schütte, M., Bej, S. et al. Contribution of Synthetic Data Generation towards an Improved Patient Stratification in Palliative Care. Journal of Personalised Medicine. 2022, 12, 1278. https://doi.org/10.3390/jpm12081278
Srivastava P., Bej S., Schultz K., Yordanova K. and Wolkenhauer O., Attention Retrieval Model for Entity Relation Extraction From Biological Literature, IEEE Access, vol. 10, pp. 22429-22440, 2022, https://doi.org/10.1109/ACCESS.2022.3154820
Bej, S., Sarkar, J., Biswas, S. et al. Identification and epidemiological characterization of Type-2 diabetes sub-population using an unsupervised machine learning approach. Nutr. Diabetes 12, 27 (2022). https://doi.org/10.1038/s41387-022-00206-2
Kristian Schultz, Saptarshi Bej, Waldemar Hahn, Markus Wolfien, Prashant Srivastava, Olaf Wolkenhauer, ConvGeN: Convex space learning improves deep-generative oversampling for tabular imbalanced classification on smaller datasets, arXiv (pre-print), 13 Jul, 2022, https://arxiv.org/abs/2206.09812