液相析出(Liquid Phase Deposition;LPD)法と呼ばれる、液相中で高結晶性の無機材料を合成可能な手法の開発に取り組んでいます。その手法を用いて、様々な材料合成を通じて低エネルギーで高効率に有価値物質を合成可能な電極触媒開発を行っています。特に最近では、将来の水素化社会の実現に資するべく、高効率な水電解用電極触媒の開発を目指しています。
*画像はLPDの概念図(Sustainable Energy & Fuel, 2024)
We are working on the development of a method recognized as the Liquid Phase Deposition (LPD) method, which enables the synthesis of highly crystalline inorganic materials in the aqueous solution phase. Utilizing this technique, we develop various types of electrocatalysts capable of synthesizing valuable substances with high efficiency and low energy input. In particular, our recent focus has been on the development of high-efficiency electrocatalysts for water electrolysis, aiming to contribute to the realization of a future hydrogen-based society.
Right figure: Schematic illustration of LPD process(Sustainable Energy & Fuel, 2024)
無尽蔵な太陽光、中でもその多くを占める可視光のエネルギーを高効率に物質変換に利用することは持続可能な社会の実現に向けた鍵と言えます。それに向けて、光のエネルギーを高度にナノ空間に濃縮可能な局在表面プラズモン共鳴と呼ばれる現象に着目した研究を行っています。例えば可視光エネルギーを電気エネルギーに変換する新たな電極の創生や、高度な光濃縮場で見られる特異な光物質応答や光物質相互作用の探索を行うことで、高効率な光利用の実現を目指しています。
*画像はプラズモン構造を利用した多色応答電極(JPCL 2024)
Efficient utilization of the abundant energy of sunlight—particularly the visible light which mainly consists of sunlight —is a key to realizing a sustainable society. Toward this goal, we asre conducting research focused on a phenomenon known as localized surface plasmon resonance (LSPR), which enables the intense confinement of light energy within nanoscale regions. For example, we aim to realize high-efficiency light utilization through the development of novel electrodes that convert visible light energy into electrical energy, as well as through the investigations of unique photochemical responses and light-matter interactions that occur in highly concentrated optical fields.
Right figure: Schematic illustration of multicolor response plasmonic cathode (JPCL 2024)