See Reseachmap for lab member's full CV
Professor Takatoshi Hikida [researchmap] [Google Scholar]
Assistant Professor Takaaki Ozawa [researchmap]
JSPS Research Fellow Yoshiatsu Aomine [researchmap]
Specially Appointed Researcher Yumi Hata [researchmap]
Visiting Professor Tom Macpherson [researchmap]
Visiting Professor Sarah King
Lab Alumni
Makiko Morita [researchmap]
Takashi Yamaguchi @New York University [researchmap]
Tadaaki Nishioka @Icahn School of Medicine at Mount Sinai [researchmap]
Koki Sakurai @Friedrich-Alexander-Universität Erlangen-Nürnberg [researchmap]
Li Siyao @Chinese Academy of Sciences
Suthinee Attachaipanich @Kyoto University [pubmed]
Selected publications (*corresponding author, #equal contribution)
Ozawa T*#, Nakagawa I#, Uchida Y#, Abe M, Macpherson T, Yamashita Y*, Hikida T* (2025) Flexible value coding in the mesolimbic dopamine system depending on internal water and sodium balance. npj Science of Food, 9(1): 197. https://doi.org/10.1038/s41538-025-00558-w (Open access) (Press release)
Sakurai K, Morita M, Aomine Y, Matsumoto M, Moriyama T, Kasahara E, Sekiyama A, Otani M, Oshima R, Loveland KL, Yamada M, Yoneda Y, Oka M*, Hikida T*, Miyamoto Y*. (2024) Importin α4 deficiency induces psychiatric disorder-related behavioral deficits and neuroinflammation in mice. Translational Psychiatry, 2024 Oct 8;14(1):426. http://doi.org/10.1038/s41398-024-03138-w. (Open access)(Press release)
Nishioka T*, Attachaipanich S, Hamaguchi K, Lazarus M, de Kerchove d’Exaerde A, Macpherson T*, Hikida T*. (2023) Error-related signaling in nucleus accumbens D2 receptor-expressing neurons guides inhibition-based choice behavior in mice. Nature Communications, 14: 2284. https://doi.org/10.1038/s41467-023-38025-3 (Open access)
Aomine Y, Sakurai K, Macpherson T, Ozawa T, Miyamoto Y, Yoneda Y, Oka M, Hikida T*. (2022) Importin α3 (KPNA3) deficiency augments effortful reward-seeking behavior in mice. Frontiers in Neuroscience, 16: 905991. https://doi.org/10.3389/fnins.2022.905991 (Open access)
Macpherson T, Matsumoto M, Gomi H, Morimoto J, Uchibe E, Hikida T*. (2021) Parallel and hierarchical neural mechanisms for adaptive and predictive behavioral control. Neural Networks, 144: 507-521. https://doi.org/10.1016/j.neunet.2021.09.009 (Open access)
Macpherson T, Hikida T*. (2019) Role of basal ganglia neurocircuitry in the pathology of psychiatric disorders. Psychiatry and Clinical Neurosciences, 73, 289-301.https://doi.org/10.1111/pcn.12830 (Open access)
Hikida T*, Morita M, Macpherson T. (2016) Neural mechanisms of the nucleus accumbens circuit in reward and aversive learning. Neurosci. Res., 108: 1-5.
Macpherson T, Morita M, Hikida T*. (2014) Striatal direct and indirect pathways control decision-making behavior. Front. Psychol., 5: 1301.
Hikida T*, Yawata S, Yamaguchi T, Danjo T, Sasaoka T, Wang Y, Nakanishi S*. (2013) Pathway-specific modulation of nucleus accumbens in reward and aversive behavior via selective transmitter receptors. Proc. Natl. Acad. Sci. U.S.A., 110: 342-347.
Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y, Cascella NG, Kano S, Ozaki N, Nabeshima T*, Sawa A*. (2013) Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science, 339: 335-339.
Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S*. (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66: 896-907.
Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andradé M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A*. (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc. Natl. Acad. Sci. U.S.A., 104: 14501-14506.
Recent publications (*corresponding author, #equal contribution)
Cao Z, Setoyama D, Daudelin MN, Matsushima T, Yada Y, Watabe M, Hikida T, Kato TA*, Honda N*. (2025) Leveraging machine learning to uncover the hidden links between trusting behavior and biological markers. Dialogues in Clinical Neuroscience, 2025 Dec; 27(1): 201-215. https://doi.org/10.1080/19585969.2025.2513697 (Open access)
Ozawa T*#, Nakagawa I#, Uchida Y#, Abe M, Macpherson T, Yamashita Y*, Hikida T* (2025) Flexible value coding in the mesolimbic dopamine system depending on internal water and sodium balance. npj Science of Food, 9(1): 197. https://doi.org/10.1038/s41538-025-00558-w (Open access) (Press release)
疋田貴俊. (2025) 柔軟で戦略的な意思決定のための側坐核神経機構. BRAIN and NERVE, 77 (7): 789-793. DOI: 10.11477/mf.188160960770070789(リンク)
Matunis A#, Iwamoto R#, Stacy E, Abe K, Tamura S, Kambe Y, Itokazu T, Hikida T*, Sato TK*, Sato TR*. (2025) Intermingled representation of oral cavity in mouse trigeminal ganglion. Scientific Reports, 2025 July; 15: 22007. https://doi.org/10.1038/s41598-025-05382-6 (Open access)
宮本洋一, 櫻井航輝, 疋田貴俊. (2025) 核輸送分子Importin αの多機能性からさぐる高次脳機能. 生化学.97巻3号309-313 2025年6月号. Journal of Japanese Biochemical Society, 97(3): 309-313. DOI:10.14952/SEIKAGAKU.2025.970309 (LINK)
Itakura M, Kubo T, Kaneshige A, Nakatsuji M, Harada N, Yamaji R, Hikida T, Inui T, Nakajima H*. (2025) Inhibition of GAPDH aggregation as a potential treatment for acute ischemic stroke. iScience, 2025 June; 28(6):112564. https://doi.org/10.1016/j.isci.2025.112564 (Open access)(Press release)
Kamate M, Teranishi H, Umeda R, Shikano K, Kitaoka S, Hanada T, Hikida T, Kawano K, Hanada R*. (2025) Dietary texture-driven masticatory activity and its impact on stress tolerance. Journal of Oral Biosciences, 2025 March; 67(1): 100628. DOI: 10.1016/j.job.2025.100628
Aomine Y#, Shimo Y#, Sakurai K, Abe M, Macpherson T, Ozawa T*, Hikida T*. (2025) Sex-dependant differences in the ability of nicotine to modulate discrimination learning and cognitive flexibility in mice. Journal of Neurochemistry, 2025 Jan; 169(1): e16227. http://doi.org/10.1111/jnc.16227 (Open access)
Park J, Shimbo H, Tamura S, Tomoda T, Hikida T, Okado H, Hirai S*. (2025) Impact of Feeding Age on Cognitive Impairment in Mice with Disrupted-In-Schizophrenia 1 (DISC1) Mutation Under a High Sucrose Diet. Behavioural Brain Research, 2025 Jan; 476:115291. DOI: 10.1016/j.bbr.2024.115291.
Uchida Y, Hikida T, Honda M, Yamashita Y*. (2024) Heterogeneous appetite patterns in depression: computational modeling of nutritional interoception, reward processing, and decision-making. Frontiers in Human Neuroscience, 18:1502508. DOI: 10.3389/fnhum.2024.1502508 https://doi.org/10.3389/fnhum.2024.1502508 (Open access)
Hata Y*, Matsui H, Iguchi Y, Samejima K, Sawa K. (2024) A reinforcement schedule with two types of temporal information. MethodsX, 13, 102831, 2024 Dec. https://doi.org/10.1016/j.mex.2024.102831 (Open access)
Sakurai K, Morita M, Aomine Y, Matsumoto M, Moriyama T, Kasahara E, Sekiyama A, Otani M, Oshima R, Loveland KL, Yamada M, Yoneda Y, Oka M*, Hikida T*, Miyamoto Y*. (2024) Importin α4 deficiency induces psychiatric disorder-related behavioral deficits and neuroinflammation in mice. Translational Psychiatry, 2024 Oct 8;14(1):426. http://doi.org/10.1038/s41398-024-03138-w. (Open access)(Press release)
Tokumaru T, Apolinario MEC, Shimizu N, Umeda R, Honda K, Shikano K, Teranishi H, Hikida T, Hanada T, Ohta K, Li Y, Murakami K, Hanada R*. (2024) Hepatic extracellular ATP/adenosine dynamics in zebrafish models of alcoholic and metabolic steatotic liver disease. Scientific Reports, 2024 Apr 3;14(1):7813. https://doi.org/10.1038/s41598-024-58043-5 (Open access)
Nomiya H#, Sakurai K#, Miyamoto Y, Oka M, Yoneda Y, Hikida T*, Yamada M*. (2024) A Kpna1-deficient psychotropic drug-induced schizophrenia model mouse for studying gene–environment interactions. Scientific Reports, 14: 3376. https://doi.org/10.1038/s41598-024-53237-3 (Open access)
Aomine Y#, Oyama Y#, Sakurai K, Macpherson T, Ozawa T*, Hikida T*. (2024) Clozapine N-oxide, Compound 21, and JHU37160 do not influence effortful reward-seeking behavior in mice. Psychopharmacology, 241: 89–96. https://doi.org/10.1007/s00213-023-06465-w (Open access)
MacphersonT*, Dixon CI, Robertson J, Sindarto MM, Janak PH, Belelli D, Lambert JJ, Stephens DN, King SL* (2023) α4-Containing GABAA Receptors on DRD2 Neurons of the Nucleus Accumbens Mediate Instrumental Responding for Conditioned Reinforcers and Its Potentiation by Cocaine. eNeuro, 10(8): ENEURO.0236-23.2023. https://doi.org/10.1523/ENEURO.0236-23.2023 (Open access)
Hamasaki Y*, Sakaue Y, Matsuo M, Sanada R, Nakayama T, Michikoshi S, Ueba S, Kurimoto N, Hikida T, Murai T. (2023) Diagnostic specificity of the child psychosis-risk screening system with a focus on the differentiation of schizophrenia spectrum disorders and neurodevelopmental disorders. Frontiers in Child and Adolescent Psychiatry, 2: 1230346. https://doi.org/10.3389/frcha.2023.1230346 (Open access)
Li S, Sakurai K*., Ohgidani M, Kato TA*, Hikida T*. (2023) Ameliorative effects of Fingolimod (FTY720) on microglial activation and psychosis-related behavior in short term cuprizone exposed mice. Molecular Brain, 16: 59. https://doi.org/10.1186/s13041-023-01047-5 (Open access)
Carrasco Apolinario ME, Umeda R, Teranishi H, Shan M, Phurpa, Sebastian WA, Lai S, Shimizu N, Shiraishi H, Shikano K, Hikida T, Hanada T, Ohta K, Hanada R*. (2023) Behavioral and neurological effects of Vrk1 deficiency in zebrafish. Biochemical and Biophysical Research Communications, 675: 10-18. https://doi.org/10.1016/j.bbrc.2023.07.005
Matsudaira T*, Nakano S, Konishi Y, Kawamoto S, Uemura K, Kondo T, Sakurai K, Ozawa T, Hikida T, Komine O, Yamanaka K, Fujita Y, Yamashita T, Matsumoto T, Hara E*. (2023) Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype. Communications Biology, 6(1): 665. https://doi.org/10.1038/s42003-023-05027-2 (Open access)
Attachaipanich S, Ozawa T, Macpherson T*, Hikida T*. (2023) Dual Roles for Nucleus Accumbens Core Dopamine D1-Expressing Neurons Projecting to the Substantia Nigra Pars Reticulata in Limbic and Motor Control in Male Mice. eNeuro, 10(6): ENEURO.0082-23.2023. https://doi.org/10.1523/ENEURO.0082-23.2023 (Open access)
Macpherson T*, Niwa M, Morishita H, Hikida T. (2023) Editorial: Circuit, molecular, and developmental mechanisms in decision-making behavior. Frontiers in Neuroscience,17: 1192237. https://doi.org/10.3389/fnins.2023.1192237 (Open access)
Nishioka T*, Attachaipanich S, Hamaguchi K, Lazarus M, de Kerchove d’Exaerde A, Macpherson T*, Hikida T*. (2023) Error-related signaling in nucleus accumbens D2 receptor-expressing neurons guides inhibition-based choice behavior in mice. Nature Communications, 14: 2284. https://doi.org/10.1038/s41467-023-38025-3 (Open access)
Preprints (*corresponding author, #equal contribution)
Matunis A#, Iwamoto R#, Stacy E, Abe K, Tamura S, Kambe Y, Itokazu T, Hikida T*, Sato TK*, Sato TR*. (2025) Intermingled representation of oral cavity in mouse trigeminal ganglion. bioRxiv, 2025.06.03.657656. https://doi.org/10.1101/2025.06.03.657656
Ozawa T#*, Nakagawa I#, Uchida Y#, Abe M, Macpherson T, Yamashita Y*, Hikida T*. (2025) Flexible value coding in the mesolimbic dopamine system depending on internal water and sodium balance. bioRxiv, 2025.04.16.649233. https://doi.org/10.1101/2025.04.16.649233
Seiriki K*, Maeda S, Kojima L, Fujimoto Y, Baba T, Rokujo H, Nitta T, Nakazawa T, Kasai A, Hikida T, Hashimoto H. (2025) Noradrenergic efferent subsystems that gate traumatic social learning. bioRxiv,2025.03.07.641347. https://doi.org/10.1101/2025.03.07.641347
Uchida Y, Hikida T, Honda M, Yamashita T*. (2024) Heterogeneous Appetite Patterns in Depression: Computational Modeling of Nutritional Interoception, Reward Processing, and Decision-Making . bioRxiv, 2024.09.25.614954. https://doi.org/10.1101/2024.09.25.614954
Itakura M, Kubo T, Kaneshige A, Nakatsuji M, Hikida T, Inui T, Nakajima H*. (2024) Inhibition of GAPDH Aggregation as a Potential Treatment for Acute Ischemic Stroke. Available at SSRN: https://ssrn.com/abstract=4836763 or http://dx.doi.org/10.2139/ssrn.4836763
Aomine Y#, Shimo Y#, Sakurai K, Abe M, Macpherson T, Ozawa T*, Hikida T*. (2024) Sex-dependant differences in the ability of nicotine to modulate discrimination learning and cognitive flexibility in mice. bioRxiv, 2024.04.29.591794. https://doi.org/10.1101/2024.04.29.591794
Sakurai K, Morita M, Aomine Y, Matsumoto M, Moriyama T, Kasahara E, Sekiyama A, Otani M, Oshima R, Loveland KL, Yamada M, Yoneda Y, Oka M*, Hikida T*, Miyamoto Y*. (2024) Importin α4 deficiency induces psychiatric disorder-related behavioral deficits and neuroinflammation in mice. bioRxiv, https://doi.org/10.1101/2024.04.18.590002
Cao Z, Setoyama D, Daudelin MN, Matsushima T, Yada Y, Watabe M, Hikida T, Kato TA*, Honda N*. (2023) Leveraging Machine Learning to Uncover the Hidden Links between Trusting Behavior and Biological Markers. bioRxiv, https://doi.org/10.1101/2023.09.12.557384
Attachaipanich S, Ozawa T, Macpherson T*, Hikida T*. (2023) Dual roles for nucleus accumbens core dopamine D1-expressing neurons projecting to the substantia nigra pars reticulata in limbic and motor control. bioRxiv, https://doi.org/10.1101/2023.03.25.534237.
Nishioka T*, Macpherson T, Hamaguchi K, Hikida T*. (2022) Error-related signaling in nucleus accumbens D2 receptor-expressing neurons guides avoidance-based goal-directed behavior. Research Square, https://doi.org/10.21203/rs.3.rs-1109714/v1
Nishioka T*, Macpherson T, Hamaguchi K, Hikida T*. (2021) Distinct Roles of Dopamine D1 and D2 Receptor-expressing Neurons in the Nucleus Accumbens for a Strategy Dependent Decision Making. bioRxiv, https://doi.org/10.1101/2021.08.05.455353 .
Original articles after 2017 (*corresponding author, #equal contribution) CLICK to open.
Cao Z, Setoyama D, Daudelin MN, Matsushima T, Yada Y, Watabe M, Hikida T, Kato TA*, Honda N*. (2025) Leveraging machine learning to uncover the hidden links between trusting behavior and biological markers. Dialogues in Clinical Neuroscience, 2025 Dec; 27(1): 201-215. https://doi.org/10.1080/19585969.2025.2513697 (Open access)
Ozawa T*#, Nakagawa I#, Uchida Y#, Abe M, Macpherson T, Yamashita Y*, Hikida T* (2025) Flexible value coding in the mesolimbic dopamine system depending on internal water and sodium balance. npj Science of Food, 9(1): 197. https://doi.org/10.1038/s41538-025-00558-w (Open access) (Press release)
Matunis A#, Iwamoto R#, Stacy E, Abe K, Tamura S, Kambe Y, Itokazu T, Hikida T*, Sato TK*, Sato TR*. (2025) Intermingled representation of oral cavity in mouse trigeminal ganglion. Scientific Reports, 2025 July; 15: 22007. https://doi.org/10.1038/s41598-025-05382-6 (Open access)
Itakura M, Kubo T, Kaneshige A, Nakatsuji M, Harada N, Yamaji R, Hikida T, Inui T, Nakajima H*. (2025) Inhibition of GAPDH aggregation as a potential treatment for acute ischemic stroke. iScience, 2025 June, 28(6):112564. https://doi.org/10.1016/j.isci.2025.112564 (Open access)(Press release)
Kamate M, Teranishi H, Umeda R, Shikano K, Kitaoka S, Hanada T, Hikida T, Kawano K, Hanada R*. (2025) Dietary texture-driven masticatory activity and its impact on stress tolerance. Journal of Oral Biosciences, 2025 March; 67(1): 100628. DOI: 10.1016/j.job.2025.100628 (Free access until April 8, 2025)
Aomine Y#, Shimo Y#, Sakurai K, Abe M, Macpherson T, Ozawa T*, Hikida T*. (2025) Sex-dependant differences in the ability of nicotine to modulate discrimination learning and cognitive flexibility in mice. Journal of Neurochemistry, 2025 Jan; 169(1): e16227. http://doi.org/10.1111/jnc.16227 (Open access)
Park J, Shimbo H, Tamura S, Tomoda T, Hikida T, Okado H, Hirai S*. (2025) Impact of Feeding Age on Cognitive Impairment in Mice with Disrupted-In-Schizophrenia 1 (DISC1) Mutation Under a High Sucrose Diet. Behavioural Brain Research, 2025 Jan; 476:115291. DOI: 10.1016/j.bbr.2024.115291.
Uchida Y, Hikida T, Honda M, Yamashita Y*. (2024) Heterogeneous appetite patterns in depression: computational modeling of nutritional interoception, reward processing, and decision-making. Frontiers in Human Neuroscience, 18:1502508. DOI: 10.3389/fnhum.2024.1502508 https://doi.org/10.3389/fnhum.2024.1502508 (Open access)
Hata Y*, Matsui H, Iguchi Y, Samejima K, Sawa K. (2024) A reinforcement schedule with two types of temporal information. MethodsX, 13, 102831, 2024 Dec. https://doi.org/10.1016/j.mex.2024.102831
Sakurai K, Morita M, Aomine Y, Matsumoto M, Moriyama T, Kasahara E, Sekiyama A, Otani M, Oshima R, Loveland KL, Yamada M, Yoneda Y, Oka M*, Hikida T*, Miyamoto Y*. (2024) Importin α4 deficiency induces psychiatric disorder-related behavioral deficits and neuroinflammation in mice. Translational Psychiatry, 2024 Oct 8;14(1):426. http://doi.org/10.1038/s41398-024-03138-w. (Open access)
Tokumaru T, Apolinario MEC, Shimizu N, Umeda R, Honda K, Shikano K, Teranishi H, Hikida T, Hanada T, Ohta K, Li Y, Murakami K, Hanada R*. (2024) Hepatic extracellular ATP/adenosine dynamics in zebrafish models of alcoholic and metabolic steatotic liver disease. Scientific Reports, 2024 Apr 3;14(1):7813. https://doi.org/10.1038/s41598-024-58043-5 (Open access)
Nomiya H#, Sakurai K#, Miyamoto Y, Oka M, Yoneda Y, Hikida T*, Yamada M*. (2024) A Kpna1-deficient psychotropic drug-induced schizophrenia model mouse for studying gene–environment interactions. Scientific Reports, 14: 3376. https://doi.org/10.1038/s41598-024-53237-3 (Open access)
Aomine Y#, Oyama Y#, Sakurai K, Macpherson T, Ozawa T*, Hikida T*. (2024) Clozapine N-oxide, Compound 21, and JHU37160 do not influence effortful reward-seeking behavior in mice. Psychopharmacology, 241: 89–96. https://doi.org/10.1007/s00213-023-06465-w (Open access)
MacphersonT*, Dixon CI, Robertson J, Sindarto MM, Janak PH, Belelli D, Lambert JJ, Stephens DN, King SL* (2023) α4-Containing GABAA Receptors on DRD2 Neurons of the Nucleus Accumbens Mediate Instrumental Responding for Conditioned Reinforcers and Its Potentiation by Cocaine. eNeuro, 10(8): ENEURO.0236-23.2023. https://doi.org/10.1523/ENEURO.0236-23.2023 (Open access)
Hamasaki Y*, Sakaue Y, Matsuo M, Sanada R, Nakayama T, Michikoshi S, Ueba S, Kurimoto N, Hikida T, Murai T. (2023) Diagnostic specificity of the child psychosis-risk screening system with a focus on the differentiation of schizophrenia spectrum disorders and neurodevelopmental disorders. Frontiers in Child and Adolescent Psychiatry, 2: 1230346. https://doi.org/10.3389/frcha.2023.1230346 (Open access)
Li S, Sakurai K*., Ohgidani M, Kato TA*, Hikida T*. (2023) Ameliorative effects of Fingolimod (FTY720) on microglial activation and psychosis-related behavior in short term cuprizone exposed mice. Molecular Brain, 16: 59. https://doi.org/10.1186/s13041-023-01047-5 (Open access)
Carrasco Apolinario ME, Umeda R, Teranishi H, Shan M, Phurpa, Sebastian WA, Lai S, Shimizu N, Shiraishi H, Shikano K, Hikida T, Hanada T, Ohta K, Hanada R*. (2023) Behavioral and neurological effects of Vrk1 deficiency in zebrafish. Biochemical and Biophysical Research Communications, 675: 10-18. https://doi.org/10.1016/j.bbrc.2023.07.005
Matsudaira T*, Nakano S, Konishi Y, Kawamoto S, Uemura K, Kondo T, Sakurai K, Ozawa T, Hikida T, Komine O, Yamanaka K, Fujita Y, Yamashita T, Matsumoto T, Hara E*. (2023) Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype. Communications Biology, 6(1): 665. https://doi.org/10.1038/s42003-023-05027-2 (Open access)
Attachaipanich S, Ozawa T, Macpherson T*, Hikida T*. (2023) Dual Roles for Nucleus Accumbens Core Dopamine D1-Expressing Neurons Projecting to the Substantia Nigra Pars Reticulata in Limbic and Motor Control in Male Mice. eNeuro, 10(6): ENEURO.0082-23.2023. https://doi.org/10.1523/ENEURO.0082-23.2023 (Open access)
Nishioka T*, Attachaipanich S, Hamaguchi K, Lazarus M, de Kerchove d’Exaerde A, Macpherson T*, Hikida T*. (2023) Error-related signaling in nucleus accumbens D2 receptor-expressing neurons guides inhibition-based choice behavior in mice. Nature Communications, 14: 2284. https://doi.org/10.1038/s41467-023-38025-3 (Open access)
Ozawa T*#, Kaseda K#, Ichitani Y, Yamada K. (2022) Caffeine facilitates extinction of auditory fear conditioning in rats. Neuropsychopharmacology Reports, 42: 521-525. https://doi.org/10.1002/npr2.12287 (Open access)
Hamasaki Y*, Pionnié-Dax N, Dorard G, Tajan N, Hikida T. (2022) Preliminary study of the social withdrawal (hikikomori) spectrum in French adolescents: Focusing on the differences in pathology and related factors compared with Japanese adolescents. BMC Psychiatry, 22(1): 477. https://doi.org/10.1186/s12888-022-04116-6 (Open access)
Aomine Y, Sakurai K, Macpherson T, Ozawa T, Miyamoto Y, Yoneda Y, Oka M, Hikida T*. (2022) Importin α3 (KPNA3) deficiency augments effortful reward-seeking behavior in mice. Frontiers in Neuroscience, 16: 905991. https://doi.org/10.3389/fnins.2022.905991 (Open access)
Macpherson T*#, Kim JY# and Hikida T*. (2022) Nucleus Accumbens core dopamine D2 receptor-expressing neurons control reversal learning but not set-shifting in behavioral flexibility in male mice. Frontiers in Neuroscience, 16: 885380. https://doi.org/10.3389/fnins.2022.885380 (Open access)
Uchida Y, Hikida T*, Yamashita Y*. (2022) Computational mechanisms of osmoregulation: a reinforcement learning model for sodium appetite. Frontiers in Neuroscience, 16: 857009. https://doi.org/10.3389/fnins.2022.857009 (Open access)
Umeda R, Teranishi H, Hada K, Shimizu N, Shiraishi H, Shaohong L, Shide M, Higa R, Shikano K, Shin T, Mimata H, Hikida T, Hanada T, Hanada R* (2022) Vrk2 deficiency elicits aggressive behavior in female zebrafish. Genes to Cells, 27(4): 254-265. https://doi.org/10.1111/gtc.12924 (Open access)
Jaaro-Peled H, Kumar S, Hughes D, Sumitomo A, Kim S-H, Zoubovsky S, Hirota-Tsuyada Y, Zala D, Bruyere J, Katz B, Huang B, Flores R, Narayan S, Hou Z, Economides A, Hikida T, Wetsel W, Deisseroth K, Mori S, Brandon N, Tanaka M, Ishizuka K, Houslay M, Saudou F, Dzirasa K, Sawa A, Tomoda T*. (2022) Regulation of sensorimotor gating via Disc1/Huntingtin-mediated Bdnf transport in the cortico-striatal circuit. Molecular Psychiatry, 27(3): 1805-1815. https://doi.org/10.1038/s41380-021-01389-3
Ozawa T#, Itokazu T#, Ichitani Y, Yamada K*. (2021) Pharmacologically induced N-methyl-D-aspartate receptor hypofunction impairs goal-directed food seeking in rats. Neuropsychopharmacology Reports, 2021 Dec;41(4):526-531. doi: 10.1002/npr2.12209.
Sakurai K, Itou T, Morita M, Kasahara E, Moriyama T, Macpherson T, Ozawa T, Miyamoto Y, Yoneda Y, Sekiyama A, Oka M, Hikida T*. (2021) Effects of Importin α1/KPNA1 deletion and adolescent social isolation stress on psychiatric disorder-associated behaviors in mice. PLoS One, 2021 Nov 12;16(11):e0258364. https://doi.org/10.1371/journal.pone.0258364. (Open access)
Hirai S*, Miwa H, Tanaka T, Toriumi K, Kunii Y, Shimbo H, Sakamoto T, Hino M, Izumi R, Nagaoka A, Yabe H, Nakamachi T, Shioda S, Dan T, Miyata T, Nishito Y, Suzuki K, Miyashita M, Tomoda T, Hikida T, Horiuchi J, Itokawa M, Arai M, Okado H*. (2021)High-sucrose diets contribute to brain angiopathy with impaired glucose uptake and psychosis-related higher brain dysfunctions in mice. Science Advances, 2021 Nov 12;7(46):eabl6077. https://doi.org/10.1126/sciadv.abl6077. (Open access)
Morisaki I, Shiraishi H, Fujinami H, Shimizu N, Hikida T, Arai Y, Kobayashi T, Hanada R, Penninger JM, Fujiki M, Hanada T*. (2021) Modeling a human CLP1 mutation in mouse identifies an accumulation of tyrosine pre-tRNA fragments causing pontocerebellar hypoplasia type 10. Biochemical and Biophysical Research Communications, 2021 Sep 17;570:60-66. doi: 10.1016/j.bbrc.2021.07.036.
Yeh LF#, Ozawa T#, Johansen JP*. (2021) Functional organization of the midbrain periaqueductal gray for regulating aversive memory formation. Molecular Brain, 2021 Sep 8;14(1):136. doi: 10.1186/s13041-021-00844-0.
Shimoda S, Ozawa T, Ichitani Y, Yamada K. (2021) Long-term associative memory in rats: Effects of familiarization period in object-place-context recognition test. PLoS One, 2021 Jul 30;16(7):e0254570. doi: 10.1371/journal.pone.0254570. PMID: 34329332; PMCID: PMC8323955.
Hamasaki Y*, Nakayama T, Hikida T, Murai T. (2021) Combined pattern of childhood psycho-behavioral characteristics in patients with schizophrenia: a retrospective study in Japan. BMC Psychiatry. 2021 Jan 26;21(1):57. doi: 10.1186/s12888-021-03049-w. (Open access)
Hamasaki Y*, Pionnié-Dax N, Dorard G, Tajan N, Hikida T. (2021) Identifying Social Withdrawal (Hikikomori) Factors in Adolescents: Understanding the Hikikomori Spectrum. Child Psychiatry & Human Development, 2021 Oct;52(5):808-817. doi: 10.1007/s10578-020-01064-8. (Open access)
Yatsuka H, Hada K, Shiraishi H, Umeda R, Morisaki I, Urushibata H, Shimizu N, Sebastian WA, Hikida T, Ishitani T, Hanada R, Shimada T, Kimoto K, Kubota T, Hanada T*. (2020) Exosc2 deficiency leads to developmental disorders by causing a nucleotide pool imbalance in zebrafish. Biochemical and Biophysical Research Communications, 2020 Dec 17;533(4):1470-1476. doi: 10.1016/j.bbrc.2020.10.044.
Nishioka T, Hamaguchi K, Yawata S, Hikida T, Watanabe D* (2020) Chemogenetic suppression of the subthalamic nucleus induces attentional deficits and impulsive action in a five-choice serial reaction time task in mice. Frontiers in Systems Neuroscience, 14: 38. DOI: 10.3389/fnsys.2020.00038 (Open access)
Anan M, Higa R, Shikano K, Shide M, Soda A, Carrasco Apolinaro ME, Mori K, Shin T, Miyazato M, Mimata H, Hikida T, Hanada T, Nakao K, Kangawa K, Hanada R*. (2020) Cocaine has some effect on Neuromedin U expressing neurons related to the brain reward system. Heliyon, 6(5) e03947. DOI: 10.1016/j.heliyon.2020.e03947
Saito N, Tainaka K, Macpherson T, Hikida T, Yamaguchi S, Sasaoka T*. (2020) Neurotransmission through dopamine D1 receptor is required for aversive memory formation and Arc activation in the cerebral cortex. Neuroscience Research, 156: 58-65. DOI: 10.1016/j.neures.2020.04.006.
Wang Q, Shimizu K, Maehata K, Pan Y, Sakurai K, Hikida T, Fukada Y, Takao T*. (2020) Lithium ion adduction enables UPLC-MS/MS–based analysis of multi-class, 3-hydroxyl group–containing keto-steroids. The Journal of Lipid Research, 61(4):570-579. doi: 10.1194/jlr.D119000588.
Hikida T*, Morita M, Kuroiwa M, Macpherson T, Shuto T, Sotogaku N, Niwa M, Sawa A, Nishi A. (2020) Adolescent psychosocial stress enhances sensitization to cocaine exposure in genetically vulnerable mice. Neuroscience Research, 151:38-45. DOI: 10.1016/j.neures.2019.02.007.
Hikida T*#, Yao S#, Macpherson T#, Fukakusa A, Morita M, Kimura H, Hirai K, Ando T, Toyoshiba H, Sawa A. (2020) Nucleus accumbens pathways control cell-specific gene expression in the medial prefrontal cortex. Scientific Reports, 10(1):1838. doi: 10.1038/s41598-020-58711-2.
Shioda N*, Imai Y, Yabuki Y, Sugimoto W, Yamaguchi K, Wang Y, Hikida T, Sasaoka T, Mieda M, Fukunaga K*. (2019) Dopamine D2L Receptor Deficiency Causes Stress Vulnerability through 5-HT1A Receptor Dysfunction in Serotonergic Neurons. Journal of Neuroscience, 2019 Sep 18;39(38):7551-7563. doi: 10.1523/JNEUROSCI.0079-19.2019.
Murata K*, Kinoshita T, Fukazawa Y, Kobayashi K, Yamanaka A, Hikida T, Manabe H, Yamaguchi M. (2019) Opposing Roles of Dopamine Receptor D1- and D2-Expressing Neurons in the Anteromedial Olfactory Tubercle in Acquisition of Place Preference in Mice. Frontiers in Behavioral Neuroscience, 2019 Mar 15;13:50. doi: 10.3389/fnbeh.2019.00050.
Kozuka T, Omori Y, Watanabe S, Tarusawa E, Yamamoto H, Chaya T, Furuhashi M, Morita M, Sato T, Hirose S, Ohkawa Y, Yoshimura Y, Hikida T, Furukawa T*. (2019) miR-124 dosage regulates prefrontal cortex function by dopaminergic modulation. Scientific Reports, 2019 Mar 5;9(1):3445. doi: 10.1038/s41598-019-38910-2.
Macpherson T, Mizoguchi H, Yamanaka A, Hikida T*. (2019) Preproenkephalin-expressing ventral pallidal neurons control inhibitory avoidance learning. Neurochemistry International, 2019 Jun;126:11-18. doi: 10.1016/j.neuint.2019.02.011.
Higashida S, Nagai H, Nakayama K, Shinohara R, Taniguchi M, Nagai M, Hikida T, Yawata S, Ago Y, Kitaoka S, Narumiya S, Furuyashiki T*. (2018) Repeated social defeat stress impairs attentional set shifting irrespective of social avoidance and increases female preference associated with heightened anxiety. Scientific Reports, 2018 Jul 11;8(1):10454. doi: 10.1038/s41598-018-28803-1.
Macpherson T, Hikida T*. (2018) Nucleus Accumbens Dopamine D1-Receptor-Expressing Neurons Control the Acquisition of Sign-Tracking to Conditioned Cues in Mice. Frontiers in Neuroscience, 2018 Jun 21;12:418. doi: 10.3389/fnins.2018.00418.
Sumitomo A, Yukitake H, Hirai K, Horike K, Ueta K, Chung Y, Warabi E, Yanagawa T, Kitaoka S, Furuyashiki T, Narumiya S, Hirano T, Niwa M, Sibille E, Hikida T, Sakurai T, Ishizuka K, Sawa A, Tomoda T*. (2018) Ulk2 controls cortical excitatory-inhibitory balance via autophagic regulation of p62 and GABAA receptor trafficking in pyramidal neurons. Human Molecular Genetetics, 2018 Sep 15;27(18):3165-3176. doi: 10.1093/hmg/ddy219.
Sumitomo A, Saka A, Ueta K, Horike K, Hirai K, Gamo NJ, Hikida T, Nakayama KI, Sawa A, Sakurai T, Tomoda T*. (2018) Methylphenidate and Guanfacine Ameliorate ADHD-Like Phenotypes in Fez1-Deficient Mice. Molecular Neuropsychiatry, 2018 May;3(4):223-233. doi: 10.1159/000488081.
Miyajima M, Zhang B, Sugiura Y, Sonomura K, Guerrini MM, Tsutsui Y, Maruya M, Vogelzang A, Chamoto K, Honda K, Hikida T, Ito S, Qin H, Sanuki R, Suzuki K, Furukawa T, Ishihama Y, Matsuda F, Suematsu M, Honjo T, Fagarasan S*. Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nature Immunology, 2017 Dec;18(12):1342-1352. doi: 10.1038/ni.3867.
Hayashi Y*, Yawata S, Funabiki K, Hikida T. In vivo calcium imaging from dentate granule cells with wide-field fluorescence microscopy. PLoS One, 2017 Jul 12;12(7):e0180452. doi: 10.1371/journal.pone.0180452.
Shimizu Y, Son C*, Aotani D, Nomura H, Hikida T, Hosoda K, Nakao K. Role of leptin in conditioned place preference to high-fat diet in leptin-deficient ob/ob mice. Neuroscience Letters, 2017 Feb 15;640:60-63. doi: 10.1016/j.neulet.2017.01.033.
Sumitomo A, Ueta K, Mauchi S, Hirai K, Horike K, Hikida T, Sakurai T, Sawa A, Tomoda T*. Ulk1 protects against ethanol-induced neuronal stress and cognition-related behavioral deficits. Neuroscience Research, 2017 Apr;117:54-61. doi: 10.1016/j.neures.2016.12.004.
Shioda N*, Yabuki Y, Wang Y, Uchigashima M, Hikida T, Sasaoka T, Mori H, Watanabe M, Sasahara M, Fukunaga K*. Endocytosis following dopamine D2 receptor activation is critical for neuronal activity and dendritic spine formation via Rabex-5/PDGFRβ signaling in striatopallidal medium spiny neurons. Molecular Psychiatry, 2017 Aug;22(8):1205-1222. doi: 10.1038/mp.2016.200.
Original articles before 2016 (from Kyoto Univ., JHU or OBI) (*corresponding author) CLICK to open.
55. Hayashi Y*, Sawa A, Hikida T*. (2016) Impaired hippocampal activity at the goal zone on the place preference task in a DISC1 mouse model. Neuroscience Research, 106: 70-73.
56. Macpherson T, Morita M, Wang Y, Sasaoka T, Sawa A, Hikida T*. (2016) Nucleus accumbens dopamine D2-receptor expressing neurons control behavioral flexibility in a place discrimination task in the IntelliCage. Learning & Memory, 23: 359-364.
57. Morita M, Wang Y, Sasaoka T, Okada K, Niwa M, Sawa A, Hikida T*. (2016) Dopamine D2L receptor is required for visual discrimination and reversal learning. Molecular Neuropsychiatry, 2: 124-132.
58. Jaaro-Peled H, Altimus C, LeGates T, Cash-Padgett T, Zoubovsky S, Hikida T, Ishizuka K, Hattar S, Mongrain V, Sawa A*. (2016) Abnormal wake/sleep pattern in a novel gain-of-function model of DISC1. Neuroscience Research, 112: 63-69.
59. Aotani D, Son C*, Shimizu Y, Nomura H, Hikida T, Kusakabe T, Tanaka T, Miyazawa T, Hosoda K, Nakao K. (2016) Reevaluation of anti-obesity action of mazindol and elucidation of its effect on the reward system. Neuroscience Letters, 633: 141-145.
60. Yamaguchi T, Goto A, Nakahara I, Yawata S, Hikida T, Matsuda M, Funabiki K, Nakanishi S*. (2015) Role of PKA signaling in D2 receptor-expressing neurons in the core of the nucleus accumbens in aversive learning. Proc. Natl. Acad. Sci. U.S.A., 112: 11383-11388.
61. Nakajima H, Kubo T, Ihara H, Hikida T, Danjo T, Nakatsuji M, Shahani N, Itakura M, Ono Y, Azuma Y, Inui T, Kamiya A, Sawa A, Takeuchi T. (2015) Nuclear-translocated glyceraldehyde-3-phosphate dehydrogenase promotes poly(ADP-ribose) polymerase-1 activation during oxidative/nitrosative stress in stroke. J. Biol. Chem., 290: 14493-14503.
62. Hikida T*, Yawata S, Yamaguchi T, Danjo T, Sasaoka T, Wang Y, Nakanishi S*. (2013) Pathway-specific modulation of nucleus accumbens in reward and aversive behavior via selective transmitter receptors. Proc. Natl. Acad. Sci. U.S.A., 110: 342-347.
63. Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y, Cascella NG, Kano S, Ozaki N, Nabeshima T*, Sawa A*. (2013) Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science, 339: 335-339.
64. Yamaguchi T, Danjo T, Pastan I, Hikida T, Nakanishi S*. (2013) Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear. Neuron, 78: 537-544.
65. Sano H, Chiken S, Hikida T, Kobayashi K, Nambu A*. (2013) Signals through the striatopallidal indirect pathway stop movement by phasic excitation in the substantia nigra. J. Neurosci., 33: 7583-7594.
66. Yawata S, Yamaguchi T, Danjo T, Hikida T, Nakanishi S*. (2012) Pathway-specific control of reward learning and its flexibility via selective dopamine receptor in the nucleus accumbens. Proc. Natl. Acad. Sci. U.S.A., 109: 12764-12769.
67. Kimura K, Hikida T, Yawata S, Yamaguchi T, Nakanishi S*. (2011) Pathway-specific engagement of ephrinA5-EphA4/EphA5 system of the substantia nigra pars reticulata in cocaine-induced responses. Proc. Natl. Acad. Sci. U.S.A., 108: 9981-9986.
68. Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S*. (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66: 896-907.
69. Schretlen DJ*, Vannorsdll TD, Winicki JM, Mushtaq Y, Hikida T, Sawa A, Yolken RH, Dickerson FB, Cascella NG. (2010) Neuroanatomic and cognitive abnormalities related to herpes simplex virus type 1 in schizophrenia. Schizophrenia Res., 118: 224-231.
70. Hikida T, Mustafa AK, Maeda K, Fujii K, Saleh M, Barrow RK, Huganir RL, Snyder SH, Hashimoto K, Sawa A*. (2008) Modulation of D-serine levels in brains of mice lacking PICK1. Biol. Psychiatry, 63: 997-1000.
71. Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andradé M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A*. (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc. Natl. Acad. Sci. U.S.A., 104: 14501-14506.
72. Fujii K, Maeda K, Hikida T, Mustafa AK, Balkissoon R, Xia J, Yamada T, Kawahara R, Okawa M, Huganir RL, Ujike H, Snyder SH, Sawa A*. (2006) Serine Racemase Binds to PICK1: Potential Relevance to Schizophrenia. Mol. Psychiatry, 11: 150-157.
73. Kitano T, Matsumura S, Seki T, Hikida T, Sakimura K, Nagano T, Mishina M, Nakanishi S, Ito S*. (2004) Characterization of N-methyl-D-aspartate receptor subunits involved in acute ammonia toxicity. Neurochem Int., 44: 83-90.
74. Hikida T, Kitabatake Y, Pastan I, Nakanishi S*. (2003) Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine. Proc. Natl. Acad. Sci. U.S.A., 100: 6169-6173.
75. Kitabatake Y, Hikida T, Watanabe D, Pastan I, Nakanishi S*. (2003). Impairment of reward-related learning by cholinergic cell ablation in the striatum. Proc. Natl. Acad. Sci. U.S.A., 100: 7965-7970.
76. Hikida T, Kaneko S, Isobe T, Kitabatake Y, Watanabe D, Pastan I, Nakanishi S*. (2001) Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens. Proc. Natl. Acad. Sci. U.S.A., 98: 13351-13354.
77. Kaneko S, Hikida T, Watanabe D, Ichinose H, Nagatsu T, Kreitman RJ, Pastan I, Nakanishi S*. (2000) Synaptic Integration Mediated by Striatal Cholinergic Interneurons in Basal Ganglia Function. Science, 289: 633-637.
78. Takebayashi H, Oida H, Fujisawa K, Yamaguchi M, Hikida T, Fukumoto M, Narumiya S, Kakizuka A*. (1996) Hormone-induced Apoptosis by Fas-Nuclear Receptor Fusion Proteins: Novel Biological Tools for Controlling Apoptosis in vivo. Cancer Res., 56: 4164-4170.
Review articles after 2017 (*corresponding author)
Macpherson T*, Niwa M, Morishita H, Hikida T. (2023) Editorial: Circuit, molecular, and developmental mechanisms in decision-making behavior. Frontiers in Neuroscience, 17:1192237. https://doi.org/10.3389/fnins.2023.1192237 (Open access)
Onitsuka T*, Hirano Y, Nemoto K, Hashimoto N, Kushima I, Koshiyama D, Koeda M, Takahashi T, Noda Y, Matsumoto J, Miura K, Nakazawa T, Hikida T, Kasai K, Ozaki N, Hashimoto R* (2022) Trends in big data analyses by multicenter collaborative translational research in psychiatry. Psychiatry and Clinical Neurosciences, 76(1): 1-14. https://doi.org/10.1111/pcn.13311 (Open access)
Macpherson T, Churchland A, Sejnowski A, DiCarlo J, Kamitani Y, Takahashi H, Hikida T*. (2021) Natural and Artificial Intelligence: a brief introduction to the interplay between AI and neuroscience research. Neural Networks, 144: 603-613. https://doi.org/10.1016/j.neunet.2021.09.018 (Open access)
Macpherson T, Matsumoto M, Gomi H, Morimoto J, Uchibe E, Hikida T*. (2021) Parallel and hierarchical neural mechanisms for adaptive and predictive behavioral control. Neural Networks, 144: 507-521. https://doi.org/10.1016/j.neunet.2021.09.009 (Open access)
Macpherson T, Hikida T*. (2019) Role of basal ganglia neurocircuitry in the pathology of psychiatric disorders. Psychiatry and Clinical Neurosciences, 73, 289-301.https://doi.org/10.1111/pcn.12830 (Open access)
Macpherson T, Hikida T*. (2019) Response to ‘Mood and Affect’ Psychiatry and Clinical Neurosciences, 73(6):347. https://doi.org/10.1111/pcn.12845 (Open access)
Tomoda T*, Hikida T, Sakurai T. (2017) Role of DISC1 in neuronal trafficking and its implication in neuropsychiatric manifestation and neurotherapeutics. Neurotherapeutics, 14(3): 623-629. https://doi.org/10.1007/s13311-017-0556-5
Kitanishi T, Ito HT, Hayashi Y, Shinohara Y, Mizuseki K*, Hikida T*. (2017) Network mechanisms of hippocampal laterality, place coding and goal-directed navigation. Journal of Physiological Sciences, 67(2): 247-258. https://doi.org/10.1007/s12576-016-0502-z (Open access)
Review articles before 2016 (from Kyoto Univ. or OBI) (*corresponding author) CLICK to open.
9. Hikida T*, Morita M, Macpherson T. (2016) Neural mechanisms of the nucleus accumbens circuit in reward and aversive learning. Neurosci. Res., 108: 1-5.
10. Sakurai T, Gamo NJ, Hikida T, Kim S-H, Murai T, Tomoda T, Sawa A. (2015) Converging models of schizophrenia – Network alterations of prefrontal cortex underlying cognitive impairments. Prog. Neurobiol., 134: 178-201.
11. Macpherson T, Morita M, Hikida T*. (2014) Striatal direct and indirect pathways control decision-making behavior. Front. Psychol., 5: 1301.
12. Nakanishi S, Hikida T, Yawata S. (2014) Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors. Neuroscience, 282: 49-59.
13. Hikida T*, Gamo NJ, Sawa A*. (2012) DISC1 as a therapeutic target for mental illnesses. Expert Opin. Ther. Targets, 16: 1151-1160.
14. Nakanishi S, Kaneko S, Hikida T, Watanabe D, Pastan I. (2003) Role of synaptic integration of dopaminergic and cholinergic transmissions in basal ganglia function. International Congress Series, 1250: 487-492.