22) Demir, H.; Erucar, I. Effect of Atomic Charges on C2H2/CO2/CH4 Separation Performances of Covalent-Organic Framework Adsorbents. Advanced Theory and Simulations 2025, e00060. https://doi.org/10.1002/adts.202500060.
21) Demir, H.; Erucar, I. Simulation and Machine Learning-Integrated Investigation of Double-Linker MOFs for the Separation of CF4 from CH4 and N2. Ind. Eng. Chem. Res. 2024, 63 (28), 12605–12619. https://doi.org/10.1021/acs.iecr.4c01222.
20) Demir, H.; Keskin, S. A New Era of Modeling MOF-Based Membranes: Cooperation of Theory and Data Science. Macromolecular Materials and Engineering 2024, 309 (1), 2300225. https://doi.org/10.1002/mame.202300225.
19) Demir, H.; Keskin, S. Revealing Acetylene Separation Performances of Anion-Pillared MOFs by Combining Molecular Simulations and Machine Learning. Chemical Engineering Journal 2023, 464, 142731. https://doi.org/10.1016/j.cej.2023.142731.
18) Demir, H.; Daglar, H.; Gulbalkan, H. C.; Aksu, G. O.; Keskin, S. Recent Advances in Computational Modeling of MOFs: From Molecular Simulations to Machine Learning. Coordination Chemistry Reviews 2023, 484, 215112. https://doi.org/10.1016/j.ccr.2023.215112.
17) Demir, H.; Keskin, S. Multi-Level Computational Screening of in Silico Designed MOFs for Efficient SO2 Capture. J. Phys. Chem. C 2022, 126 (23), 9875–9888. https://doi.org/10.1021/acs.jpcc.2c00227.
16) Demir, H.; Keskin, S. Hypothetical yet Effective: Computational Identification of High-Performing MOFs for CO2 Capture. Computers & Chemical Engineering 2022, 160, 107705. https://doi.org/10.1016/j.compchemeng.2022.107705.
15) Demir, H.; Keskin, S. Computational Investigation of Multifunctional MOFs for Adsorption and Membrane-Based Separation of CF4/CH4, CH4/H2, CH4/N2, and N2/H2 Mixtures. Mol. Syst. Des. Eng. 2022, 7 (12), 1707–1721. https://doi.org/10.1039/D2ME00130F.
14) Demir, H.; Keskin, S. Computational Insights into Efficient CO2 and H2S Capture through Zirconium MOFs. Journal of CO2 Utilization 2022, 55, 101811. https://doi.org/10.1016/j.jcou.2021.101811.
13) Demir, H.; Aksu, G. O.; Gulbalkan, H. C.; Keskin, S. MOF Membranes for CO2 Capture: Past, Present and Future. Carbon Capture Science & Technology 2022, 2, 100026. https://doi.org/10.1016/j.ccst.2021.100026.
12) Demir, H.; Keskin, S. Zr-MOFs for CF4/CH4, CH4/H2, and CH4/N2 Separation: Towards the Goal of Discovering Stable and Effective Adsorbents. Mol. Syst. Des. Eng. 2021, 6 (8), 627–642. https://doi.org/10.1039/D1ME00060H.
11) Demir, H.; Grabow, L. C. Enhancing Technological Applications through Density Functional Theory Modeling of Nanomaterials. ACS Appl. Nano Mater. 2020, 3 (7), 6127–6130. https://doi.org/10.1021/acsanm.0c01396.
10) Demir, H.; Stoneburner, S. J.; Jeong, W.; Ray, D.; Zhang, X.; Farha, O. K.; Cramer, C. J.; Siepmann, J. I.; Gagliardi, L. Metal–Organic Frameworks with Metal–Catecholates for O2/N2 Separation. J. Phys. Chem. C 2019, 123 (20), 12935–12946. https://doi.org/10.1021/acs.jpcc.9b02848.
9) Demir, H.; Cramer, C. J.; Siepmann, J. I. Computational Screening of Metal–Organic Frameworks for Biogas Purification. Mol. Syst. Des. Eng. 2019, 4 (6), 1125–1135. https://doi.org/10.1039/C9ME00095J.
8) Yang, D.; Momeni, M. R.; Demir, H.; Pahls, D. R.; Rimoldi, M.; Wang, T. C.; Farha, O. K.; Hupp, J. T.; Cramer, C. J.; Gates, B. C.; Gagliardi, L. Tuning the Properties of Metal–Organic Framework Nodes as Supports of Single-Site Iridium Catalysts: Node Modification by Atomic Layer Deposition of Aluminium. Faraday Discuss. 2017, 201 (0), 195–206. https://doi.org/10.1039/C7FD00031F.
7) Susner, M. A.; Chyasnavichyus, M.; Puretzky, A. A.; He, Q.; Conner, B. S.; Ren, Y.; Cullen, D. A.; Ganesh, P.; Shin, D.; Demir, H.; McMurray, J. W.; Borisevich, A. Y.; Maksymovych, P.; McGuire, M. A. Cation–Eutectic Transition via Sublattice Melting in CuInP2S6/In4/3P2S6 van Der Waals Layered Crystals. ACS Nano 2017, 11 (7), 7060–7073. https://doi.org/10.1021/acsnano.7b02695.
6) Demir, H.; Walton, K. S.; Sholl, D. S. Computational Screening of Functionalized UiO-66 Materials for Selective Contaminant Removal from Air. J. Phys. Chem. C 2017, 121 (37), 20396–20406. https://doi.org/10.1021/acs.jpcc.7b07079.
5) Chen, T.; Lei, X.; Demir, H.; Cramer, C. J.; Gagliardi, L.; Guy, S. J. MOF: Creating an Educational Game on Nanotechnology through Simulation-Driven Optimization. In Proceedings of the 9th International Conference on Motion in Games; MIG ’16; Association for Computing Machinery: New York, NY, USA, 2016; pp 39–48. https://doi.org/10.1145/2994258.2994267.
4) Susner, M. A.; Belianinov, A.; Borisevich, A.; He, Q.; Chyasnavichyus, M.; Demir, H.; Sholl, D. S.; Ganesh, P.; Abernathy, D. L.; McGuire, M. A.; Maksymovych, P. High-Tc Layered Ferrielectric Crystals by Coherent Spinodal Decomposition. ACS Nano 2015, 9 (12), 12365–12373. https://doi.org/10.1021/acsnano.5b05682.
3) Demir, H.; Greathouse, J. A.; Staiger, C. L.; IV, J. J. P.; Allendorf, M. D.; Sholl, D. S. DFT-Based Force Field Development for Noble Gas Adsorption in Metal Organic Frameworks. J. Mater. Chem. A 2015, 3 (46), 23539–23548. https://doi.org/10.1039/C5TA06201B.
2) Parkes, M. V.; Demir, H.; Teich-McGoldrick, S. L.; Sholl, D. S.; Greathouse, J. A.; Allendorf, M. D. Molecular Dynamics Simulation of Framework Flexibility Effects on Noble Gas Diffusion in HKUST-1 and ZIF-8. Microporous and Mesoporous Materials 2014, 194, 190–199. https://doi.org/10.1016/j.micromeso.2014.03.027.
1) Fang, H.; Demir, H.; Kamakoti, P.; Sholl, D. S. Recent Developments in First-Principles Force Fields for Molecules in Nanoporous Materials. J. Mater. Chem. A 2014, 2 (2), 274–291. https://doi.org/10.1039/C3TA13073H.