PhD talk on the Haar measure (15/03/2019, SU);
Swedish A-B class (A2 level, January - August 2019);
Analysis, geometry and PDE Summerschool (01/07/2019 – 05/07/2019, Nordfjordeid);
YMC*A (05/08/2019 – 10/08/2019, Copenhagen);
teaching combinatorics III and math I (2019 - 2020), and library duty;
Swedish C,D class (B2 level, September - December 2019);
PhD Mathfest (25/10/2019, Skansen);
Masterclass on "Equilibrium states in semigroup theory, K-theory and number theory" (03/11/2019 - 06/11/2019, Oslo);
PhD talk on the Banach-Tarski paradox (28/02/2020, SU);
Reading groupoids (fall 2021, SU);
Online seminars: GOBA (Groups, Operators, and Banach Algebras Webinar) , UK Virtual Operator Algebras, Wales MPPM, York semigroup seminar, Wednesday Stockholm Zoom seminar, Sydney seminar;
Swedish-Norewgian operator algebra meeting (November 2021, Trondheim);
Workshop on Semigroups, representation theory and C*-algebras (May 2022, Oslo);
YMC*A (08/08/2022 - 12/08/2022, Oslo).
Swedish Workshop on NCG and OA (November 2022, Gothenburg)
PhD defense, December 2023
Abstract harmonic analysis, S. Raum, 2017, EPFL;
tannakian categories, W. Goldring, 2019, SU;*
characteristic classes, T. Bauer, 2019, KTH;
ethics in research (modern version of Marxism - Leninism), 2019, Stockholm;*
mathematics education at university level, Tornbjörn Tambour, 2019, SU;*
introduction to operator algebras, S. Raum, 2020, SU;*
complex algebraic geometry, D. Rydh, 2020, KTH;*
K-theory and DAG seminar, 2020, Stockholm;
geometric group theory, S. Raum, 2021, Stockholm;*
characteristic classes, T. Bauer - G. Arone, 2021, Stockholm*;
introduction to the Langlands program over number fields, W. Goldring, 2022, SU;*
the Atiyah-Singer index theorem, J. Dahl, 2022, KTH;*
expander graphs, S. Raum, 2022, SU.
Favre, G., Raum, S. An algebraic characterisation of ample type I groupoids. Semigroup Forum 104, 58–71 (2022). https://doi.org/10.1007/s00233-021-10241-7 (arxiv.org/abs/2012.07896)
Free actions of polynomial growth Lie groups and classifiable C*-algebras (https://arxiv.org/abs/2307.15013) w/ U. Enstad, S. Raum
A note on inner amenability for FLC point sets (https://arxiv.org/abs/2307.01880).