• F. Campanini and F. Fedele, Building pretorsion theories from torsion theories, Algebr. Represent. Theory, online version available (2025). https://arxiv.org/abs/2310.00316
• F. Borceux, F. Campanini, M. Gran and W. Tholen, Groupoids and skeletal categories form a pretorsion theory in Cat, Adv. Mat. 426 (2023) 109110. https://arxiv.org/abs/2207.08487
• F. Borceux, F. Campanini and M. Gran, Pretorsion theories in lextensive categories, J. Israel Math 265 (2025) 833-866. https://arxiv.org/abs/2205.11054
• F. Borceux, F. Campanini and M. Gran, The stable category of preorders in a pretopos II: the universal property, Ann. Math. Pura Appl. 201 (2022) pp. 2847--2869. https://arxiv.org/abs/2201.08016
• F. Borceux, F. Campanini and M. Gran, The stable category of preorders in a pretopos I: general theory, J. Pure Appl. Algebra 226 (9) (2021) 106997. https://arxiv.org/abs/2201.05992
• F. Campanini and C. A. Finocchiaro, Some remarks on Prüfer rings with zero-divisors, J. Pure Appl. Algebra 225 (9) (2021). https://arxiv.org/abs/2403.20220
• F. Campanini and A. Facchini, Exactness of cochain complexes via additive functors, Comm. Korean Math. Soc. 35 (4) (2020), 1075-1085. https://arxiv.org/abs/2504.12138
• F. Campanini and C. A. Finocchiaro, On bi-amalgamated constructions, J. Algebra Appl. 18 No.08 (2019), 1950148, 16 pp. https://arxiv.org/abs/2403.20224
• F. Campanini, S.F. El-Deken and A. Facchini, Homomorphisms with semilocal endomorphism rings between modules, Algebra and Representation Theory 23 (2019), 2237-2256. https://arxiv.org/abs/2504.12874
• F. Campanini and A. Facchini, Factorizations of polynomials with integral non-negative coefficients, Semigroup Forum 99 (2018), 317-322. https://arxiv.org/abs/2504.12145
• F. Campanini and A. Facchini, On a category of extensions whose endomorphism rings have at most four maximal ideals, in “Advances in Rings and Modules”, S. López-Permouth, J. K. Park, C. Roman and S. T. Rizvi Eds, Contemp. Math. 715 (2018), 107-126. https://arxiv.org/abs/2504.12873
• F. Campanini, On a category of chain of modules whose endomorphism rings have at most 2n maximal ideals, Communications in Algebra 49 (2018), 1971-1982. https://arxiv.org/abs/2504.12155
• F. Campanini, L. Cossu, S. Tringali, The Category of Atomic Monoids: Universal Constructions and Their Arithmetic Properties, submitted (2024). https://arxiv.org/abs/2502.06610
• F. Campanini, An overview on non-unique factorizations, Booklet Seminario Dottorato 2019/20 Università di Padova (2020), 7-16.
https://dottorato.math.unipd.it/sites/default/files/Booklet_Seminario_Dottorato_2019-2020.pdf
• A. Zaccagnini, Prime numbers in short intervals: the Selberg integral and its generalizations, written by F. Campanini, Proceedings of the Roman Number Theory association 2 (2017), 31-36.
• F. Borceux and F. Campanini, Some remarks on pretorsion theories for internal categories, preprint.
• F. Campanini and C.A. Finocchiaro, Spectral spaces of some classes of modules, ongoing project.
• F. Campanini, Weak forms of the Krull-Schmidt theorem and Prüfer rings in distinguished constructions, Ph.D. Thesis (2019).