Research Highlights

Deciphering the loss of metal binding due to mutation D83G of human SOD1 protein causing FALS disease

Mutations in Cu/Zn superoxide dismutase 1 (SOD1) protein are found to be the causative factor, behind the majority of familial amyotrophic later sclerosis (FALS) cases. The mutations particularly on the metal (Zn) binding residues are found to increase the disease onset in the individuals suffering from FALS, while the presence of the metal ion (Zn) is essential for the catalytic activity and retaining the protein stability. Thus in our study, we focused on one such metal binding mutant (D83G) and assessed the impact of the mutation on protein structure and function. The influence of mutation was examined dynamically, using discrete molecular dynamics on both the native and mutant SOD1 protein respectively. Accordingly, the variation in conformational stability, residual flexibility and protein compactness along with the change in conformational free energy were monitored over the entire dynamic period. Moreover, the motion of native and mutant SOD1 was also observed via the essential dynamics. Besides, the disparity in Zn ion binding was inspected through distance analysis and steered molecular dynamics, correspondingly. Therefore, the study provides a better understanding over the profound effect of mutation on SOD1, both structurally and functionally, using computational approaches.

Exploring the cause of aggregation and reduced Zn binding affinity by G85R mutation in SOD1 rendering amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disorder is characterized by the degeneration of upper and lower motor neuron. ALS occurs due to various notably prominent missense mutations, in gene encoding Cu-Zn superoxide dismutase (SOD1) thereby leading to aggregation, dysfunction and reduced Zn binding affinity. In this study, one such mutation, G85R was explored in comparison with wild type SOD1, using discrete molecular dynamics (DMD). Accordingly, the conformational changes were significantly observed in mutant SOD1, through various geometrical parameters, which substantiated the difference in conformational deviation, flexibility and compactness, thus stipulating a root cause for aggregation. Followed by, analysis of essential dynamics further authenticated the cause behind the protein dysfunction. In particular, the high content of beta sheet with structural deviations, down to dysfunction was established in mutant as compared to wild type, while passing through secondary structure analysis. Subsequently, the deviation of distance in Zn binding residues was distinctly portrayed in mutant as compared to wild type, thus confirming the cause of reduced Zn binding affinity. In addition, the steered molecular dynamics analysis also authenticated the above results indicating the reduced Zn binding affinity in the mutant as compared to that of the wild type. Hence, this work revealed the theoretical mechanism to unravel the mutational effects of cofactor dependent protein.

Computational investigation of the human SOD1 mutant, Cys146Arg, that directs familial amyotrophic lateral sclerosis

The genetic substitution mutation of Cys146Arg in the SOD1 protein is predominantly found in the Japanese population suffering from familial amyotrophic lateral sclerosis (FALS). A complete study of the biophysical aspects of this particular missense mutation through conformational analysis and producing free energy landscapes could provide an insight into the pathogenic mechanism of ALS disease. In this study, we utilized general molecular dynamics simulations along with computational predictions to assess the structural characterization of the protein as well as the conformational preferences of monomeric wild type and mutant SOD1. Our static analysis, accomplished through multiple programs, predicted the deleterious and destabilizing effect of mutant SOD1. Subsequently, comparative molecular dynamic studies performed on the wild type and mutant SOD1 indicated a loss in the protein conformational stability and flexibility. We observed the mutational consequences not only in local but also in long-range variations in the structural properties of the SOD1 protein. Long-range intramolecular protein interactions decrease upon mutation, resulting in less compact structures in the mutant protein rather than in the wild type, suggesting that the mutant structures are less stable than the wild type SOD1. We also presented the free energy landscape to study the collective motion of protein conformations through principal component analysis for the wild type and mutant SOD1. Overall, the study assisted in revealing the cause of the structural destabilization and protein misfolding via structural characterization, secondary structure composition and free energy landscapes. Hence, the computational framework in our study provides a valuable direction for the search for the cure against fatal FALS.

Computational investigation of curcumin, a natural polyphenol that inhibits the destabilization and the aggregation of human SOD1 mutant (Ala4Val)

Aberrant aggregation in proteins leads to increased propensity of β-sheets, thereby increasing the toxicity level. Numerous neurological disorders are triggered due to aggregation in protein. Superoxide dismutase 1 (SOD1) is one such protein that leads to familial amyotrophic lateral sclerosis, a devastating neurodegenerative disorder. In our study, the aggregation effect in native and the fatal mutant (Ala4Val) SOD1 was examined, using tCONCOORD. Experimental studies reported that the naturally obtained polyphenol has an inhibitory effect on the aggregated protein. Consequently, we predominantly focused on curcumin, a natural occurring polyphenol, to inhibit the aggregation in SOD1. In view of that, curcumin was computationally docked with both the native and mutant SOD1, using Autodock. Thus, our analysis suggested that curcumin showed an enhanced binding affinity in the mutant SOD1 with increased hydrophobic interactions as compared to native SOD1. Further investigations were accomplished, using steered molecular dynamics and conformational sampling on both the bound complexes of native and mutant SOD1 with curcumin to unravel the effect of disaggregation. In addition, we also elucidated the variations in the free energy landscape of native and mutant SOD1 in their unbound and bound states to differentiate the aggregation. Hence, the study postulated a classical treatment against mutant SOD1, using the naturally occurring polyphenol (curcumin) via the computational framework for designing therapeutics against ALS.

Probing the inhibitory activity of epigallocatechin-gallate on toxic aggregates of mutant (L84F) SOD1 protein through geometry based sampling and steered molecular dynamics

Amyloid formation and protein aggregation are considered to be at the core of the disease pathology for the various neurodegenerative disorders such as Amyotrophic lateral sclerosis (ALS). Considerable experimental reports have suggested that epigallocatechin-gallate (EGCG), a natural polyphenol from the green tea inhibits the amyloid formation in multiple neurodegenerative disease. Mutations in SOD1 protein are considered to a key factor that contributes towards the rapid disease progression and the pathogenesis in both, the sporadic and familial form. In our study, we computationally examined the inhibitory action of EGCG against the native and the mutant SOD1 through molecular docking, steered molecular dynamics and conformational sampling methods From the outcome, we could conjecture that the protein destabilization and increased β-sheet propensity that occurred due to mutation were regained upon the binding of EGCG. Moreover, the concepts of the free energy landscape analysis are introduced to establish the visual appearance of protein aggregation upon mutation. Altogether, we come to know that the binding of EGCG on mutant SOD1 has reduced the formation of the toxic aggregates upon mutation. Hence, our study could be an initiative in deciphering the inhibitory action of EGCG against the aggregated mutant SOD1, which could be a therapeutic potential against the treatment for the incurable neurodegenerative disorder (ALS) affecting the mankind.

Cysteine to Serine Conversion at 111th Position Renders the Disaggregation and Retains the Stabilization of Detrimental SOD1 A4V Mutant Against Amyotrophic Lateral Sclerosis in Human—A Discrete Molecular Dynamics Study

Protein aggregation is a hallmark of various neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS) in humans. Mutations in Cu/Zn superoxide dismutase (SOD1) protein were found to be a prominent cause behind the majority of the familial ALS cases with abnormal protein aggregates. Herein, we report the biophysical characterization of the beneficial mutation C111S that stabilizes the SOD1 harbouring A4V mutation, one of the most lethal diseases causing mutant that leads to protein destabilization and aggregation. In this study, we utilized discrete molecular dynamics (DMD) simulations, which stipulated an outlook over the systematic action of C111S mutation in the A4V mutant that stabilizes the protein and impedes the formation of protein aggregation. Herewith, the findings from our study manifested that the mutation of C111S in SOD1 could aid in regaining the protein structural conformations that protect against the formation of toxic aggregates, thereby hindering the disease pathogenicity subtly. Hence, our study provides a feasible pharmaceutical strategy in developing the treatment for incurable ALS affecting the mankind.