Session 1 (Chair: Siu Lun Chau, Shireen Kudukkil Manchingal)
08:45-09:00 Opening Remarks
Organising Committee
09:00-09:30 Invited talk: Eyke Hüllermeier
The Aleatoric-Epistemic Dichotomy of Uncertainty Quantification in Machine Learning: Challenges, Doubts, and Opportunities
09:30-10:00 Invited talk: Fanny Yang
Robust distributional generalization with imperfect knowledge of the robust risk
10:00-10:30 Oral presentations #1 (12min + 3minQ&A each)
Maxitive Donsker–Varadhan Formulation for Possibilistic Variational Inference
Jasraj Singh, Shelvia Wongso, Jeremie Houssineau, Badr-Eddine Chérief-Abdellatif
Uncertainty-aware diffusion models for probabilistic regression
Carlo Kneissl, Christopher Bülte, Philipp Scholl, Gitta Kutyniok
10:30-11:00 Coffee break
Session 2 (Chair: Shireen Kudukkil Manchingal)
11:00-11:30 Invited talk: Fabio Cuzzolin
Towards an epistemic generative AI
11:30-12:30 Poster session #1
12:30-13:30 Lunch break
Session 3 (Chair: Krikamol Muandet)
13:30-14:00 Oral presentations #2 (12min + 3minQ&A each)
A Formal Assessment of Uncertainty Measures in Regression
Christopher Bülte, Yusuf Sale, Timo Löhr, Paul Hofman, Gitta Kutyniok, Eyke Hüllermeier
Entropy Is Not Enough: Uncertainty Quantification for LLMs fails under Aleatoric Uncertainty
Tim Tomov, Dominik Fuchsgruber, Tom Wollschläger, Stephan Günnemann
14:00-15:00 Poster session #2
15:00-15:30 Coffee break
Session 4 (Chair: Michele Caprio)
15:30-16:00 Invited talk: Ryan Martin
Imprecision is Imperative for Valid Uncertainty Quantification in Machine Learning
16:00-17:00 Panel discussion: Is probability sufficient for the next generation epistemic AI?
Fabio Cuzzolin, Eyke Hüllermier, Ryan Martin, Fanny Yang, Jason Konek, Gert de Cooman
17:00-17:15 Closing remarks
Organizing Committee